Factors of ergodic group extensions of rotations
Studia Mathematica, Tome 103 (1992) no. 2, pp. 123-131
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Diagonal metric subgroups of the metric centralizer $C(T_φ)$ of group extensions are investigated. Any diagonal compact subgroup Z of $C(T_φ)$ is determined by a compact subgroup Y of a given metric compact abelian group X, by a family ${v_y : y ∈ Y}$, of group automorphisms and by a measurable function f:X → G (G a metric compact abelian group). The group Z consists of the triples $(y,F_y,v_y)$, y ∈ Y, where $F_y(x) = v_y(f(x)) - f(x+y)$, x ∈ X.
Keywords:
group extension
Affiliations des auteurs :
Jan Kwiatkowski 1
@article{10_4064_sm_103_2_123_131,
author = {Jan Kwiatkowski},
title = {Factors of ergodic group extensions of rotations},
journal = {Studia Mathematica},
pages = {123--131},
publisher = {mathdoc},
volume = {103},
number = {2},
year = {1992},
doi = {10.4064/sm-103-2-123-131},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-2-123-131/}
}
TY - JOUR AU - Jan Kwiatkowski TI - Factors of ergodic group extensions of rotations JO - Studia Mathematica PY - 1992 SP - 123 EP - 131 VL - 103 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-2-123-131/ DO - 10.4064/sm-103-2-123-131 LA - en ID - 10_4064_sm_103_2_123_131 ER -
Jan Kwiatkowski. Factors of ergodic group extensions of rotations. Studia Mathematica, Tome 103 (1992) no. 2, pp. 123-131. doi: 10.4064/sm-103-2-123-131
Cité par Sources :