Factors of ergodic group extensions of rotations
Studia Mathematica, Tome 103 (1992) no. 2, pp. 123-131

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Diagonal metric subgroups of the metric centralizer $C(T_φ)$ of group extensions are investigated. Any diagonal compact subgroup Z of $C(T_φ)$ is determined by a compact subgroup Y of a given metric compact abelian group X, by a family ${v_y : y ∈ Y}$, of group automorphisms and by a measurable function f:X → G (G a metric compact abelian group). The group Z consists of the triples $(y,F_y,v_y)$, y ∈ Y, where $F_y(x) = v_y(f(x)) - f(x+y)$, x ∈ X.
DOI : 10.4064/sm-103-2-123-131
Keywords: group extension

Jan Kwiatkowski 1

1
@article{10_4064_sm_103_2_123_131,
     author = {Jan Kwiatkowski},
     title = {Factors of ergodic group extensions of rotations},
     journal = {Studia Mathematica},
     pages = {123--131},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {1992},
     doi = {10.4064/sm-103-2-123-131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-2-123-131/}
}
TY  - JOUR
AU  - Jan Kwiatkowski
TI  - Factors of ergodic group extensions of rotations
JO  - Studia Mathematica
PY  - 1992
SP  - 123
EP  - 131
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-2-123-131/
DO  - 10.4064/sm-103-2-123-131
LA  - en
ID  - 10_4064_sm_103_2_123_131
ER  - 
%0 Journal Article
%A Jan Kwiatkowski
%T Factors of ergodic group extensions of rotations
%J Studia Mathematica
%D 1992
%P 123-131
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-2-123-131/
%R 10.4064/sm-103-2-123-131
%G en
%F 10_4064_sm_103_2_123_131
Jan Kwiatkowski. Factors of ergodic group extensions of rotations. Studia Mathematica, Tome 103 (1992) no. 2, pp. 123-131. doi: 10.4064/sm-103-2-123-131

Cité par Sources :