The Compact Approximation Property does not imply the Approximation Property
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 103 (1992) no. 1, pp. 99-108
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              It is shown how to construct, given a Banach space which does not have the approximation property, another Banach space which does not have the approximation property but which does have the compact approximation property.
            
            
            
          
        
      @article{10_4064_sm_103_1_99_108,
     author = {George Willis},
     title = {The {Compact} {Approximation} {Property} does not imply the {Approximation} {Property}},
     journal = {Studia Mathematica},
     pages = {99--108},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {1992},
     doi = {10.4064/sm-103-1-99-108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-1-99-108/}
}
                      
                      
                    TY - JOUR AU - George Willis TI - The Compact Approximation Property does not imply the Approximation Property JO - Studia Mathematica PY - 1992 SP - 99 EP - 108 VL - 103 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-1-99-108/ DO - 10.4064/sm-103-1-99-108 LA - en ID - 10_4064_sm_103_1_99_108 ER -
%0 Journal Article %A George Willis %T The Compact Approximation Property does not imply the Approximation Property %J Studia Mathematica %D 1992 %P 99-108 %V 103 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-1-99-108/ %R 10.4064/sm-103-1-99-108 %G en %F 10_4064_sm_103_1_99_108
George Willis. The Compact Approximation Property does not imply the Approximation Property. Studia Mathematica, Tome 103 (1992) no. 1, pp. 99-108. doi: 10.4064/sm-103-1-99-108
Cité par Sources :
