The Compact Approximation Property does not imply the Approximation Property
Studia Mathematica, Tome 103 (1992) no. 1, pp. 99-108

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown how to construct, given a Banach space which does not have the approximation property, another Banach space which does not have the approximation property but which does have the compact approximation property.
DOI : 10.4064/sm-103-1-99-108

George Willis 1

1
@article{10_4064_sm_103_1_99_108,
     author = {George Willis},
     title = {The {Compact} {Approximation} {Property} does not imply the {Approximation} {Property}},
     journal = {Studia Mathematica},
     pages = {99--108},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {1992},
     doi = {10.4064/sm-103-1-99-108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-1-99-108/}
}
TY  - JOUR
AU  - George Willis
TI  - The Compact Approximation Property does not imply the Approximation Property
JO  - Studia Mathematica
PY  - 1992
SP  - 99
EP  - 108
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-1-99-108/
DO  - 10.4064/sm-103-1-99-108
LA  - en
ID  - 10_4064_sm_103_1_99_108
ER  - 
%0 Journal Article
%A George Willis
%T The Compact Approximation Property does not imply the Approximation Property
%J Studia Mathematica
%D 1992
%P 99-108
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-1-99-108/
%R 10.4064/sm-103-1-99-108
%G en
%F 10_4064_sm_103_1_99_108
George Willis. The Compact Approximation Property does not imply the Approximation Property. Studia Mathematica, Tome 103 (1992) no. 1, pp. 99-108. doi: 10.4064/sm-103-1-99-108

Cité par Sources :