Points fixes et théorèmes ergodiques dans les espaces L¹(E)
Studia Mathematica, Tome 103 (1992) no. 1, pp. 79-97
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that for each linear contraction T : X → X (∥T∥ ≤ 1), the subspace F = {x ∈ X : Tx = x} of fixed points is 1-complemented, where X is a suitable subspace of L¹(E*) and E* is a separable dual space such that the weak and weak* topologies coincide on the unit sphere. We also prove some related fixed point results.
@article{10_4064_sm_103_1_79_97,
author = {Mourad Besbes},
title = {Points fixes et th\'eor\`emes ergodiques dans les espaces {L{\textonesuperior}(E)}},
journal = {Studia Mathematica},
pages = {79--97},
year = {1992},
volume = {103},
number = {1},
doi = {10.4064/sm-103-1-79-97},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-1-79-97/}
}
Mourad Besbes. Points fixes et théorèmes ergodiques dans les espaces L¹(E). Studia Mathematica, Tome 103 (1992) no. 1, pp. 79-97. doi: 10.4064/sm-103-1-79-97
Cité par Sources :