Points fixes et théorèmes ergodiques dans les espaces L¹(E)
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 103 (1992) no. 1, pp. 79-97
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We prove that for each linear contraction T : X → X (∥T∥ ≤ 1), the subspace F = {x ∈ X : Tx = x} of fixed points is 1-complemented, where X is a suitable subspace of L¹(E*) and E* is a separable dual space such that the weak and weak* topologies coincide on the unit sphere. We also prove some related fixed point results.
            
            
            
          
        
      @article{10_4064_sm_103_1_79_97,
     author = {Mourad Besbes},
     title = {Points fixes et th\'eor\`emes ergodiques dans les espaces {L{\textonesuperior}(E)}},
     journal = {Studia Mathematica},
     pages = {79--97},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {1992},
     doi = {10.4064/sm-103-1-79-97},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-1-79-97/}
}
                      
                      
                    TY - JOUR AU - Mourad Besbes TI - Points fixes et théorèmes ergodiques dans les espaces L¹(E) JO - Studia Mathematica PY - 1992 SP - 79 EP - 97 VL - 103 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-1-79-97/ DO - 10.4064/sm-103-1-79-97 LA - fr ID - 10_4064_sm_103_1_79_97 ER -
Mourad Besbes. Points fixes et théorèmes ergodiques dans les espaces L¹(E). Studia Mathematica, Tome 103 (1992) no. 1, pp. 79-97. doi: 10.4064/sm-103-1-79-97
Cité par Sources :
