Points fixes et théorèmes ergodiques dans les espaces L¹(E)
Studia Mathematica, Tome 103 (1992) no. 1, pp. 79-97

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for each linear contraction T : X → X (∥T∥ ≤ 1), the subspace F = {x ∈ X : Tx = x} of fixed points is 1-complemented, where X is a suitable subspace of L¹(E*) and E* is a separable dual space such that the weak and weak* topologies coincide on the unit sphere. We also prove some related fixed point results.
DOI : 10.4064/sm-103-1-79-97

Mourad Besbes 1

1
@article{10_4064_sm_103_1_79_97,
     author = {Mourad Besbes},
     title = {Points fixes et th\'eor\`emes ergodiques dans les espaces {L{\textonesuperior}(E)}},
     journal = {Studia Mathematica},
     pages = {79--97},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {1992},
     doi = {10.4064/sm-103-1-79-97},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-103-1-79-97/}
}
TY  - JOUR
AU  - Mourad Besbes
TI  - Points fixes et théorèmes ergodiques dans les espaces L¹(E)
JO  - Studia Mathematica
PY  - 1992
SP  - 79
EP  - 97
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-103-1-79-97/
DO  - 10.4064/sm-103-1-79-97
LA  - fr
ID  - 10_4064_sm_103_1_79_97
ER  - 
%0 Journal Article
%A Mourad Besbes
%T Points fixes et théorèmes ergodiques dans les espaces L¹(E)
%J Studia Mathematica
%D 1992
%P 79-97
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-103-1-79-97/
%R 10.4064/sm-103-1-79-97
%G fr
%F 10_4064_sm_103_1_79_97
Mourad Besbes. Points fixes et théorèmes ergodiques dans les espaces L¹(E). Studia Mathematica, Tome 103 (1992) no. 1, pp. 79-97. doi: 10.4064/sm-103-1-79-97

Cité par Sources :