Representing and absolutely representing systems
Studia Mathematica, Tome 102 (1992) no. 3, pp. 217-223

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce various classes of representing systems in linear topological spaces and investigate their connections in spaces with different topological properties. Let us cite a typical result of the paper. If H is a weakly separated sequentially separable linear topological space then there is a representing system in H which is not absolutely representing.
DOI : 10.4064/sm-102-3-217-223

V. M. Kadets 1

1
@article{10_4064_sm_102_3_217_223,
     author = {V. M. Kadets},
     title = {Representing and absolutely representing systems},
     journal = {Studia Mathematica},
     pages = {217--223},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {1992},
     doi = {10.4064/sm-102-3-217-223},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-217-223/}
}
TY  - JOUR
AU  - V. M. Kadets
TI  - Representing and absolutely representing systems
JO  - Studia Mathematica
PY  - 1992
SP  - 217
EP  - 223
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-217-223/
DO  - 10.4064/sm-102-3-217-223
LA  - en
ID  - 10_4064_sm_102_3_217_223
ER  - 
%0 Journal Article
%A V. M. Kadets
%T Representing and absolutely representing systems
%J Studia Mathematica
%D 1992
%P 217-223
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-217-223/
%R 10.4064/sm-102-3-217-223
%G en
%F 10_4064_sm_102_3_217_223
V. M. Kadets. Representing and absolutely representing systems. Studia Mathematica, Tome 102 (1992) no. 3, pp. 217-223. doi: 10.4064/sm-102-3-217-223

Cité par Sources :