Representing and absolutely representing systems
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 102 (1992) no. 3, pp. 217-223
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We introduce various classes of representing systems in linear topological spaces and investigate their connections in spaces with different topological properties. Let us cite a typical result of the paper. If H is a weakly separated sequentially separable linear topological space then there is a representing system in H which is not absolutely representing.
            
            
            
          
        
      @article{10_4064_sm_102_3_217_223,
     author = {V. M. Kadets},
     title = {Representing and absolutely representing systems},
     journal = {Studia Mathematica},
     pages = {217--223},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {1992},
     doi = {10.4064/sm-102-3-217-223},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-217-223/}
}
                      
                      
                    TY - JOUR AU - V. M. Kadets TI - Representing and absolutely representing systems JO - Studia Mathematica PY - 1992 SP - 217 EP - 223 VL - 102 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-217-223/ DO - 10.4064/sm-102-3-217-223 LA - en ID - 10_4064_sm_102_3_217_223 ER -
V. M. Kadets. Representing and absolutely representing systems. Studia Mathematica, Tome 102 (1992) no. 3, pp. 217-223. doi: 10.4064/sm-102-3-217-223
Cité par Sources :
