Selections and representations of multifunctions in paracompact spaces
Studia Mathematica, Tome 102 (1992) no. 3, pp. 209-216
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let (X,T) be a paracompact space, Y a complete metric space, $F:X → 2^Y$ a lower semicontinuous multifunction with nonempty closed values. We prove that if $T^+$ is a (stronger than T) topology on X satisfying a compatibility property, then F admits a $T^+$-continuous selection. If Y is separable, then there exists a sequence $(f_n)$ of $T^+$-continuous selections such that $F(x)=\overline{{f_n(x);n ≥ 1}}$ for all x ∈ X. Given a Banach space E, the above result is then used to construct directionally continuous selections on arbitrary subsets of ℝ × E.
Keywords:
directionally continuous selections
Affiliations des auteurs :
Alberto Bressan 1
@article{10_4064_sm_102_3_209_216,
author = {Alberto Bressan},
title = {Selections and representations of multifunctions in paracompact spaces},
journal = {Studia Mathematica},
pages = {209--216},
publisher = {mathdoc},
volume = {102},
number = {3},
year = {1992},
doi = {10.4064/sm-102-3-209-216},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-209-216/}
}
TY - JOUR AU - Alberto Bressan TI - Selections and representations of multifunctions in paracompact spaces JO - Studia Mathematica PY - 1992 SP - 209 EP - 216 VL - 102 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-209-216/ DO - 10.4064/sm-102-3-209-216 LA - en ID - 10_4064_sm_102_3_209_216 ER -
%0 Journal Article %A Alberto Bressan %T Selections and representations of multifunctions in paracompact spaces %J Studia Mathematica %D 1992 %P 209-216 %V 102 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-209-216/ %R 10.4064/sm-102-3-209-216 %G en %F 10_4064_sm_102_3_209_216
Alberto Bressan. Selections and representations of multifunctions in paracompact spaces. Studia Mathematica, Tome 102 (1992) no. 3, pp. 209-216. doi: 10.4064/sm-102-3-209-216
Cité par Sources :