Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 p 1
Studia Mathematica, Tome 102 (1992) no. 3, pp. 193-207
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if 0 p 1 then a normalized unconditional basis of a complemented subspace of $c_0(l_p)$ must be equivalent to a permutation of a subset of the canonical unit vector basis of $c_0(l_p)$. In particular, $c_0(l_p)$ has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for $c_0(l₁)$.
@article{10_4064_sm_102_3_193_207,
author = {C. Ler\'anoz},
title = {Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 < p < 1},
journal = {Studia Mathematica},
pages = {193--207},
publisher = {mathdoc},
volume = {102},
number = {3},
year = {1992},
doi = {10.4064/sm-102-3-193-207},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-193-207/}
}
TY - JOUR
AU - C. Leránoz
TI - Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 < p < 1
JO - Studia Mathematica
PY - 1992
SP - 193
EP - 207
VL - 102
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-193-207/
DO - 10.4064/sm-102-3-193-207
LA - en
ID - 10_4064_sm_102_3_193_207
ER -
C. Leránoz. Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 < p < 1. Studia Mathematica, Tome 102 (1992) no. 3, pp. 193-207. doi: 10.4064/sm-102-3-193-207
Cité par Sources :