Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 p 1
Studia Mathematica, Tome 102 (1992) no. 3, pp. 193-207

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if 0 p 1 then a normalized unconditional basis of a complemented subspace of $c_0(l_p)$ must be equivalent to a permutation of a subset of the canonical unit vector basis of $c_0(l_p)$. In particular, $c_0(l_p)$ has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for $c_0(l₁)$.
DOI : 10.4064/sm-102-3-193-207

C. Leránoz 1

1
@article{10_4064_sm_102_3_193_207,
     author = {C. Ler\'anoz},
     title = {Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 < p < 1},
     journal = {Studia Mathematica},
     pages = {193--207},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {1992},
     doi = {10.4064/sm-102-3-193-207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-193-207/}
}
TY  - JOUR
AU  - C. Leránoz
TI  - Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 < p < 1
JO  - Studia Mathematica
PY  - 1992
SP  - 193
EP  - 207
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-193-207/
DO  - 10.4064/sm-102-3-193-207
LA  - en
ID  - 10_4064_sm_102_3_193_207
ER  - 
%0 Journal Article
%A C. Leránoz
%T Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 < p < 1
%J Studia Mathematica
%D 1992
%P 193-207
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-102-3-193-207/
%R 10.4064/sm-102-3-193-207
%G en
%F 10_4064_sm_102_3_193_207
C. Leránoz. Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 < p < 1. Studia Mathematica, Tome 102 (1992) no. 3, pp. 193-207. doi: 10.4064/sm-102-3-193-207

Cité par Sources :