Approximation of continuous convex-cone-valued functions by monotone operators
Studia Mathematica, Tome 102 (1992) no. 2, pp. 175-192
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In this paper we study the approximation of continuous functions F, defined on a compact Hausdorff space S, whose values F(t), for each t in S, are convex subsets of a normed space E. Both quantitative estimates (in the Hausdorff semimetric) and Bohman-Korovkin type approximation theorems for sequences of monotone operators are obtained.
@article{10_4064_sm_102_2_175_192,
author = {Jo\~ao B. Prolla},
title = {Approximation of continuous convex-cone-valued functions by monotone operators},
journal = {Studia Mathematica},
pages = {175--192},
year = {1992},
volume = {102},
number = {2},
doi = {10.4064/sm-102-2-175-192},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-2-175-192/}
}
TY - JOUR AU - João B. Prolla TI - Approximation of continuous convex-cone-valued functions by monotone operators JO - Studia Mathematica PY - 1992 SP - 175 EP - 192 VL - 102 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-102-2-175-192/ DO - 10.4064/sm-102-2-175-192 LA - en ID - 10_4064_sm_102_2_175_192 ER -
João B. Prolla. Approximation of continuous convex-cone-valued functions by monotone operators. Studia Mathematica, Tome 102 (1992) no. 2, pp. 175-192. doi: 10.4064/sm-102-2-175-192
Cité par Sources :