On the multiplicity function of ergodic group extensions of rotations
Studia Mathematica, Tome 102 (1992) no. 2, pp. 157-174

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For an arbitrary set A ⊆ ℕ satisfying 1 ∈ A and lcm(m₁,m₂) ∈ A whenever m₁,m₂ ∈ A, an ergodic abelian group extension of a rotation for which the range of the multiplicity function equals A is constructed.
DOI : 10.4064/sm-102-2-157-174

G. R. Goodson 1

1
@article{10_4064_sm_102_2_157_174,
     author = {G. R. Goodson},
     title = {On the multiplicity function of ergodic group extensions of rotations},
     journal = {Studia Mathematica},
     pages = {157--174},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {1992},
     doi = {10.4064/sm-102-2-157-174},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-2-157-174/}
}
TY  - JOUR
AU  - G. R. Goodson
TI  - On the multiplicity function of ergodic group extensions of rotations
JO  - Studia Mathematica
PY  - 1992
SP  - 157
EP  - 174
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-102-2-157-174/
DO  - 10.4064/sm-102-2-157-174
LA  - en
ID  - 10_4064_sm_102_2_157_174
ER  - 
%0 Journal Article
%A G. R. Goodson
%T On the multiplicity function of ergodic group extensions of rotations
%J Studia Mathematica
%D 1992
%P 157-174
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-102-2-157-174/
%R 10.4064/sm-102-2-157-174
%G en
%F 10_4064_sm_102_2_157_174
G. R. Goodson. On the multiplicity function of ergodic group extensions of rotations. Studia Mathematica, Tome 102 (1992) no. 2, pp. 157-174. doi: 10.4064/sm-102-2-157-174

Cité par Sources :