Orthogonal polynomials and middle Hankel operators on Bergman spaces
Studia Mathematica, Tome 102 (1992) no. 1, pp. 57-75

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce a sequence of Hankel style operators $H^k$, k = 1,2,3,..., which act on the Bergman space of the unit disk. These operators are intermediate between the classical big and small Hankel operators. We study the boundedness and Schatten-von Neumann properties of the $H^k$ and show, among other things, that $H^k$ are cut-off at 1/k. Recall that the big Hankel operator is cut-off at 1 and the small Hankel operator at 0.
DOI : 10.4064/sm-102-1-57-75

Lizhong Peng 1 ;  1 ;  1

1
@article{10_4064_sm_102_1_57_75,
     author = {Lizhong Peng and   and  },
     title = {Orthogonal polynomials and middle {Hankel} operators on {Bergman} spaces},
     journal = {Studia Mathematica},
     pages = {57--75},
     publisher = {mathdoc},
     volume = {102},
     number = {1},
     year = {1992},
     doi = {10.4064/sm-102-1-57-75},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-1-57-75/}
}
TY  - JOUR
AU  - Lizhong Peng
AU  -  
AU  -  
TI  - Orthogonal polynomials and middle Hankel operators on Bergman spaces
JO  - Studia Mathematica
PY  - 1992
SP  - 57
EP  - 75
VL  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-102-1-57-75/
DO  - 10.4064/sm-102-1-57-75
LA  - en
ID  - 10_4064_sm_102_1_57_75
ER  - 
%0 Journal Article
%A Lizhong Peng
%A  
%A  
%T Orthogonal polynomials and middle Hankel operators on Bergman spaces
%J Studia Mathematica
%D 1992
%P 57-75
%V 102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-102-1-57-75/
%R 10.4064/sm-102-1-57-75
%G en
%F 10_4064_sm_102_1_57_75
Lizhong Peng;  ;  . Orthogonal polynomials and middle Hankel operators on Bergman spaces. Studia Mathematica, Tome 102 (1992) no. 1, pp. 57-75. doi: 10.4064/sm-102-1-57-75

Cité par Sources :