Orthogonal polynomials and middle Hankel operators on Bergman spaces
Studia Mathematica, Tome 102 (1992) no. 1, pp. 57-75
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We introduce a sequence of Hankel style operators $H^k$, k = 1,2,3,..., which act on the Bergman space of the unit disk. These operators are intermediate between the classical big and small Hankel operators. We study the boundedness and Schatten-von Neumann properties of the $H^k$ and show, among other things, that $H^k$ are cut-off at 1/k. Recall that the big Hankel operator is cut-off at 1 and the small Hankel operator at 0.
@article{10_4064_sm_102_1_57_75,
author = {Lizhong Peng and and },
title = {Orthogonal polynomials and middle {Hankel} operators on {Bergman} spaces},
journal = {Studia Mathematica},
pages = {57--75},
year = {1992},
volume = {102},
number = {1},
doi = {10.4064/sm-102-1-57-75},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-1-57-75/}
}
TY - JOUR AU - Lizhong Peng AU - AU - TI - Orthogonal polynomials and middle Hankel operators on Bergman spaces JO - Studia Mathematica PY - 1992 SP - 57 EP - 75 VL - 102 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-102-1-57-75/ DO - 10.4064/sm-102-1-57-75 LA - en ID - 10_4064_sm_102_1_57_75 ER -
Lizhong Peng; ; . Orthogonal polynomials and middle Hankel operators on Bergman spaces. Studia Mathematica, Tome 102 (1992) no. 1, pp. 57-75. doi: 10.4064/sm-102-1-57-75
Cité par Sources :