On multilinear fractional integrals
Studia Mathematica, Tome 102 (1992) no. 1, pp. 49-56

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In $ℝ^n$, we prove $L^{p₁} ×...× L^{p_{K}}$ boundedness for the multilinear fractional integrals $I_α(f₁,...,f_K)(x) = ʃ f₁(x-θ₁ y)...f_K(x-θ_K y)|y|^{α-n} dy$ where the $θ_j$'s are nonzero and distinct. We also prove multilinear versions of two inequalities for fractional integrals and a multilinear Lebesgue differentiation theorem.
DOI : 10.4064/sm-102-1-49-56

Loukas Grafakos 1

1
@article{10_4064_sm_102_1_49_56,
     author = {Loukas Grafakos},
     title = {On multilinear fractional integrals},
     journal = {Studia Mathematica},
     pages = {49--56},
     publisher = {mathdoc},
     volume = {102},
     number = {1},
     year = {1992},
     doi = {10.4064/sm-102-1-49-56},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-1-49-56/}
}
TY  - JOUR
AU  - Loukas Grafakos
TI  - On multilinear fractional integrals
JO  - Studia Mathematica
PY  - 1992
SP  - 49
EP  - 56
VL  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-102-1-49-56/
DO  - 10.4064/sm-102-1-49-56
LA  - en
ID  - 10_4064_sm_102_1_49_56
ER  - 
%0 Journal Article
%A Loukas Grafakos
%T On multilinear fractional integrals
%J Studia Mathematica
%D 1992
%P 49-56
%V 102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-102-1-49-56/
%R 10.4064/sm-102-1-49-56
%G en
%F 10_4064_sm_102_1_49_56
Loukas Grafakos. On multilinear fractional integrals. Studia Mathematica, Tome 102 (1992) no. 1, pp. 49-56. doi: 10.4064/sm-102-1-49-56

Cité par Sources :