The modified Cauchy transformation with applications to generalized Taylor expansions
Studia Mathematica, Tome 102 (1992) no. 1, pp. 1-24
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We generalize to the case of several variables the classical theorems on the holomorphic extension of the Cauchy transforms. The Cauchy transformation is considered in the setting of tempered distributions and the Cauchy kernel is modified to a rapidly decreasing function. The results are applied to the study of "continuous" Taylor expansions and to singular partial differential equations.
@article{10_4064_sm_102_1_1_24,
author = {Bogdan Ziemian},
title = {The modified {Cauchy} transformation with applications to generalized {Taylor} expansions},
journal = {Studia Mathematica},
pages = {1--24},
year = {1992},
volume = {102},
number = {1},
doi = {10.4064/sm-102-1-1-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-102-1-1-24/}
}
TY - JOUR AU - Bogdan Ziemian TI - The modified Cauchy transformation with applications to generalized Taylor expansions JO - Studia Mathematica PY - 1992 SP - 1 EP - 24 VL - 102 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-102-1-1-24/ DO - 10.4064/sm-102-1-1-24 LA - en ID - 10_4064_sm_102_1_1_24 ER -
Bogdan Ziemian. The modified Cauchy transformation with applications to generalized Taylor expansions. Studia Mathematica, Tome 102 (1992) no. 1, pp. 1-24. doi: 10.4064/sm-102-1-1-24
Cité par Sources :