On the ideal structure of algebras of LMC-algebra valued functions
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 101 (1991) no. 3, pp. 311-318
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let X be a completely regular topological space and A a commutative locally m-convex algebra. We give a description of all closed and in particular closed maximal ideals of the algebra C(X,A) (= all continuous A-valued functions defined on X). The topology on C(X,A) is defined by a certain family of seminorms. The compact-open topology of C(X,A) is a special case of this topology.
            
            
            
          
        
      @article{10_4064_sm_101_3_311_318,
     author = {Jorma Arhippainen},
     title = {On the ideal structure of algebras of {LMC-algebra} valued functions},
     journal = {Studia Mathematica},
     pages = {311--318},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {1991},
     doi = {10.4064/sm-101-3-311-318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-101-3-311-318/}
}
                      
                      
                    TY - JOUR AU - Jorma Arhippainen TI - On the ideal structure of algebras of LMC-algebra valued functions JO - Studia Mathematica PY - 1991 SP - 311 EP - 318 VL - 101 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-101-3-311-318/ DO - 10.4064/sm-101-3-311-318 LA - en ID - 10_4064_sm_101_3_311_318 ER -
%0 Journal Article %A Jorma Arhippainen %T On the ideal structure of algebras of LMC-algebra valued functions %J Studia Mathematica %D 1991 %P 311-318 %V 101 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-101-3-311-318/ %R 10.4064/sm-101-3-311-318 %G en %F 10_4064_sm_101_3_311_318
Jorma Arhippainen. On the ideal structure of algebras of LMC-algebra valued functions. Studia Mathematica, Tome 101 (1991) no. 3, pp. 311-318. doi: 10.4064/sm-101-3-311-318
Cité par Sources :
