Weighted norm inequalities on spaces of homogeneous type
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 101 (1991) no. 3, pp. 241-251
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We give a characterization of the weights (u,w) for which the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w). We give a characterization of the weight functions w (respectively u) for which there exists a nontrivial u (respectively w > 0 almost everywhere) such that the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w).
            
            
            
          
        
      @article{10_4064_sm_101_3_241_251,
     author = {Qiyu Sun},
     title = {Weighted norm inequalities on spaces of homogeneous type},
     journal = {Studia Mathematica},
     pages = {241--251},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {1991},
     doi = {10.4064/sm-101-3-241-251},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-101-3-241-251/}
}
                      
                      
                    TY - JOUR AU - Qiyu Sun TI - Weighted norm inequalities on spaces of homogeneous type JO - Studia Mathematica PY - 1991 SP - 241 EP - 251 VL - 101 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-101-3-241-251/ DO - 10.4064/sm-101-3-241-251 LA - en ID - 10_4064_sm_101_3_241_251 ER -
Qiyu Sun. Weighted norm inequalities on spaces of homogeneous type. Studia Mathematica, Tome 101 (1991) no. 3, pp. 241-251. doi: 10.4064/sm-101-3-241-251
Cité par Sources :
