Closed operators affiliated with a Banach algebra of operators
Studia Mathematica, Tome 101 (1991) no. 3, pp. 215-240

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ℬ be a Banach algebra of bounded linear operators on a Banach space X. If S is a closed operator in X such that (λ - S)^{-1} ∈ ℬ for some number λ, then S is affiliated with ℬ. The object of this paper is to study the spectral theory and Fredholm theory relative to ℬ of an operator which is affiliated with ℬ. Also, applications are given to semigroups of operators which are contained in ℬ.
DOI : 10.4064/sm-101-3-215-240
Keywords: closed operator, spectrum, Fredholm operator, semigroup of operators, Banach algebra

Bruce A. Barnes 1

1
@article{10_4064_sm_101_3_215_240,
     author = {Bruce A. Barnes},
     title = {Closed operators affiliated with a {Banach} algebra of operators},
     journal = {Studia Mathematica},
     pages = {215--240},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {1991},
     doi = {10.4064/sm-101-3-215-240},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-101-3-215-240/}
}
TY  - JOUR
AU  - Bruce A. Barnes
TI  - Closed operators affiliated with a Banach algebra of operators
JO  - Studia Mathematica
PY  - 1991
SP  - 215
EP  - 240
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-101-3-215-240/
DO  - 10.4064/sm-101-3-215-240
LA  - en
ID  - 10_4064_sm_101_3_215_240
ER  - 
%0 Journal Article
%A Bruce A. Barnes
%T Closed operators affiliated with a Banach algebra of operators
%J Studia Mathematica
%D 1991
%P 215-240
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-101-3-215-240/
%R 10.4064/sm-101-3-215-240
%G en
%F 10_4064_sm_101_3_215_240
Bruce A. Barnes. Closed operators affiliated with a Banach algebra of operators. Studia Mathematica, Tome 101 (1991) no. 3, pp. 215-240. doi: 10.4064/sm-101-3-215-240

Cité par Sources :