A noncommutative version of a Theorem of Marczewski for submeasures
Studia Mathematica, Tome 101 (1991) no. 2, pp. 123-138
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that every monocompact submeasure on an orthomodular poset is order continuous. From this generalization of the classical Marczewski Theorem, several results of commutative Measure Theory are derived and unified.
@article{10_4064_sm_101_2_123_138,
author = {Paolo de Lucia},
title = {A noncommutative version of a {Theorem} of {Marczewski} for submeasures},
journal = {Studia Mathematica},
pages = {123--138},
publisher = {mathdoc},
volume = {101},
number = {2},
year = {1991},
doi = {10.4064/sm-101-2-123-138},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-101-2-123-138/}
}
TY - JOUR AU - Paolo de Lucia TI - A noncommutative version of a Theorem of Marczewski for submeasures JO - Studia Mathematica PY - 1991 SP - 123 EP - 138 VL - 101 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-101-2-123-138/ DO - 10.4064/sm-101-2-123-138 LA - en ID - 10_4064_sm_101_2_123_138 ER -
Paolo de Lucia. A noncommutative version of a Theorem of Marczewski for submeasures. Studia Mathematica, Tome 101 (1991) no. 2, pp. 123-138. doi: 10.4064/sm-101-2-123-138
Cité par Sources :