Pseudocomplémentation dans les espaces de Banach
Studia Mathematica, Tome 100 (1991) no. 3, pp. 251-282
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper introduces the following definition: a closed subspace Z of a Banach space E is pseudocomplemented in E if for every linear continuous operator u from Z to Z there is a linear continuous extension ū of u from E to E. For instance, every subspace complemented in E is pseudocomplemented in E. First, the pseudocomplemented hilbertian subspaces of $L¹$ are characterized and, in $L^p$ with p in [1, + ∞[, classes of closed subspaces in which the notions of complementation and pseudocomplementation are equivalent are pointed out. Then, for Banach spaces with the uniform approximation property, Dvoretzky's theorem is strengthened by proving that they contain uniformly pseudocomplemented $ℓ^2_n$'s. Finally, the study of Banach spaces in which every closed subspace is pseudocomplemented is started.
@article{10_4064_sm_100_3_251_282,
author = {Patric Rauch},
title = {Pseudocompl\'ementation dans les espaces de {Banach}},
journal = {Studia Mathematica},
pages = {251--282},
publisher = {mathdoc},
volume = {100},
number = {3},
year = {1991},
doi = {10.4064/sm-100-3-251-282},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-3-251-282/}
}
TY - JOUR AU - Patric Rauch TI - Pseudocomplémentation dans les espaces de Banach JO - Studia Mathematica PY - 1991 SP - 251 EP - 282 VL - 100 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-100-3-251-282/ DO - 10.4064/sm-100-3-251-282 LA - fr ID - 10_4064_sm_100_3_251_282 ER -
Patric Rauch. Pseudocomplémentation dans les espaces de Banach. Studia Mathematica, Tome 100 (1991) no. 3, pp. 251-282. doi: 10.4064/sm-100-3-251-282
Cité par Sources :