Korovkin theory in normed algebras
Studia Mathematica, Tome 100 (1991) no. 3, pp. 219-228

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If A is a normed power-associative complex algebra such that the selfadjoint part is normally ordered with respect to some order, then the Korovkin closure (see the introduction for definitions) of T ∪ {t* ∘ t| t ∈ T} contains J*(T) for any subset T of A. This can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to H*-algebras. For bounded H*-algebras and dual C*-algebras there is even equality. This answers a question posed in [1].
DOI : 10.4064/sm-100-3-219-228

Ferdinand Beckhoff 1

1
@article{10_4064_sm_100_3_219_228,
     author = {Ferdinand Beckhoff},
     title = {Korovkin theory in normed algebras},
     journal = {Studia Mathematica},
     pages = {219--228},
     publisher = {mathdoc},
     volume = {100},
     number = {3},
     year = {1991},
     doi = {10.4064/sm-100-3-219-228},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-3-219-228/}
}
TY  - JOUR
AU  - Ferdinand Beckhoff
TI  - Korovkin theory in normed algebras
JO  - Studia Mathematica
PY  - 1991
SP  - 219
EP  - 228
VL  - 100
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-100-3-219-228/
DO  - 10.4064/sm-100-3-219-228
LA  - en
ID  - 10_4064_sm_100_3_219_228
ER  - 
%0 Journal Article
%A Ferdinand Beckhoff
%T Korovkin theory in normed algebras
%J Studia Mathematica
%D 1991
%P 219-228
%V 100
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-100-3-219-228/
%R 10.4064/sm-100-3-219-228
%G en
%F 10_4064_sm_100_3_219_228
Ferdinand Beckhoff. Korovkin theory in normed algebras. Studia Mathematica, Tome 100 (1991) no. 3, pp. 219-228. doi: 10.4064/sm-100-3-219-228

Cité par Sources :