Two-weight weak type maximal inequalities in Orlicz classes
Studia Mathematica, Tome 100 (1991) no. 3, pp. 207-218

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Necessary and sufficient conditions are shown in order that the inequalities of the form $ϱ({M_μ f > λ})Φ(λ) ≤ C ʃ_X Ψ(C|f(x)|) σ(x)dμ$, or $ϱ({M_μ f > λ}) ≤ C ʃ_X Φ(Cλ^{-1}|f(x)|) σ(x)dμ$ hold with some positive C independent of λ > 0 and a μ-measurable function f, where (X,μ) is a space with a complete doubling measure μ, $M_μ$ is the maximal operator with respect to μ, Φ, Ψ are arbitrary Young functions, and ϱ, σ are weights, not necessarily doubling.
DOI : 10.4064/sm-100-3-207-218

Luboš Pick 1

1
@article{10_4064_sm_100_3_207_218,
     author = {Lubo\v{s} Pick},
     title = {Two-weight weak type maximal inequalities in {Orlicz} classes},
     journal = {Studia Mathematica},
     pages = {207--218},
     publisher = {mathdoc},
     volume = {100},
     number = {3},
     year = {1991},
     doi = {10.4064/sm-100-3-207-218},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-3-207-218/}
}
TY  - JOUR
AU  - Luboš Pick
TI  - Two-weight weak type maximal inequalities in Orlicz classes
JO  - Studia Mathematica
PY  - 1991
SP  - 207
EP  - 218
VL  - 100
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-100-3-207-218/
DO  - 10.4064/sm-100-3-207-218
LA  - en
ID  - 10_4064_sm_100_3_207_218
ER  - 
%0 Journal Article
%A Luboš Pick
%T Two-weight weak type maximal inequalities in Orlicz classes
%J Studia Mathematica
%D 1991
%P 207-218
%V 100
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-100-3-207-218/
%R 10.4064/sm-100-3-207-218
%G en
%F 10_4064_sm_100_3_207_218
Luboš Pick. Two-weight weak type maximal inequalities in Orlicz classes. Studia Mathematica, Tome 100 (1991) no. 3, pp. 207-218. doi: 10.4064/sm-100-3-207-218

Cité par Sources :