Malliavin calculus for stable processes on homogeneous groups
Studia Mathematica, Tome 100 (1991) no. 3, pp. 183-205
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${μ_t}_{t>0}$ be a symmetric semigroup of stable measures on a homogeneous group, with smooth Lévy measure. Applying Malliavin calculus for jump processes we prove that the measures $μ_t$ have smooth densities.
@article{10_4064_sm_100_3_183_205,
author = {Piotr Graczyk},
title = {Malliavin calculus for stable processes on homogeneous groups},
journal = {Studia Mathematica},
pages = {183--205},
publisher = {mathdoc},
volume = {100},
number = {3},
year = {1991},
doi = {10.4064/sm-100-3-183-205},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-3-183-205/}
}
TY - JOUR AU - Piotr Graczyk TI - Malliavin calculus for stable processes on homogeneous groups JO - Studia Mathematica PY - 1991 SP - 183 EP - 205 VL - 100 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-100-3-183-205/ DO - 10.4064/sm-100-3-183-205 LA - en ID - 10_4064_sm_100_3_183_205 ER -
Piotr Graczyk. Malliavin calculus for stable processes on homogeneous groups. Studia Mathematica, Tome 100 (1991) no. 3, pp. 183-205. doi: 10.4064/sm-100-3-183-205
Cité par Sources :