A bound on the Laguerre polynomials
Studia Mathematica, Tome 100 (1991) no. 2, pp. 169-181

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give the following bounds on Laguerre polynomials and their derivatives (α ≥ 0): $|t^k d^p (L_n^α(t) e^{-t/2})| ≤ 2^{-min(α,k)} 4^k(n + 1)...(n + k) ({n + p + max(α - k, 0)} \atop {n})$ for all natural numbers k, p, n ≥ 0 and t ≥ 0. Also, we give (as the main result of this paper) a technique to estimate the order in k and p in bounds similar to the previous ones, which will be used to see that the estimate on k and p in the previous bounds is sharp and to give an estimate on k and p in other bounds on the Laguerre polynomials proved by Szegö.
DOI : 10.4064/sm-100-2-169-181
Keywords: Laguerre polynomials

Antonio J. Duran 1

1
@article{10_4064_sm_100_2_169_181,
     author = {Antonio J. Duran},
     title = {A bound on the {Laguerre} polynomials},
     journal = {Studia Mathematica},
     pages = {169--181},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {1991},
     doi = {10.4064/sm-100-2-169-181},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-169-181/}
}
TY  - JOUR
AU  - Antonio J. Duran
TI  - A bound on the Laguerre polynomials
JO  - Studia Mathematica
PY  - 1991
SP  - 169
EP  - 181
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-169-181/
DO  - 10.4064/sm-100-2-169-181
LA  - en
ID  - 10_4064_sm_100_2_169_181
ER  - 
%0 Journal Article
%A Antonio J. Duran
%T A bound on the Laguerre polynomials
%J Studia Mathematica
%D 1991
%P 169-181
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-169-181/
%R 10.4064/sm-100-2-169-181
%G en
%F 10_4064_sm_100_2_169_181
Antonio J. Duran. A bound on the Laguerre polynomials. Studia Mathematica, Tome 100 (1991) no. 2, pp. 169-181. doi: 10.4064/sm-100-2-169-181

Cité par Sources :