A bound on the Laguerre polynomials
Studia Mathematica, Tome 100 (1991) no. 2, pp. 169-181
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give the following bounds on Laguerre polynomials and their derivatives (α ≥ 0): $|t^k d^p (L_n^α(t) e^{-t/2})| ≤ 2^{-min(α,k)} 4^k(n + 1)...(n + k) ({n + p + max(α - k, 0)} \atop {n})$ for all natural numbers k, p, n ≥ 0 and t ≥ 0. Also, we give (as the main result of this paper) a technique to estimate the order in k and p in bounds similar to the previous ones, which will be used to see that the estimate on k and p in the previous bounds is sharp and to give an estimate on k and p in other bounds on the Laguerre polynomials proved by Szegö.
Keywords:
Laguerre polynomials
Affiliations des auteurs :
Antonio J. Duran 1
@article{10_4064_sm_100_2_169_181,
author = {Antonio J. Duran},
title = {A bound on the {Laguerre} polynomials},
journal = {Studia Mathematica},
pages = {169--181},
publisher = {mathdoc},
volume = {100},
number = {2},
year = {1991},
doi = {10.4064/sm-100-2-169-181},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-169-181/}
}
Antonio J. Duran. A bound on the Laguerre polynomials. Studia Mathematica, Tome 100 (1991) no. 2, pp. 169-181. doi: 10.4064/sm-100-2-169-181
Cité par Sources :