Almost everywhere summability of Laguerre series
Studia Mathematica, Tome 100 (1991) no. 2, pp. 129-147
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We apply a construction of generalized twisted convolution to investigate almost everywhere summability of expansions with respect to the orthonormal system of functions $ℓ_n^a(x) = (n!/Γ(n+a+1))^{1/2} e^{-x/2} L_n^a(x)$, n = 0,1,2,..., in $L^2(ℝ_+, x^adx)$, a ≥ 0. We prove that the Cesàro means of order δ > a + 2/3 of any function $f ∈ L^p(x^adx)$, 1 ≤ p ≤ ∞, converge to f a.e. The main tool we use is a Hardy-Littlewood type maximal operator associated with a generalized Euclidean convolution.
Keywords:
Laguerre expansions, generalized twisted convolution, Riesz, Cesàro and Abel-Poisson means
@article{10_4064_sm_100_2_129_147,
author = {Krzysztof Stempak},
title = {Almost everywhere summability of {Laguerre} series},
journal = {Studia Mathematica},
pages = {129--147},
year = {1991},
volume = {100},
number = {2},
doi = {10.4064/sm-100-2-129-147},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-129-147/}
}
Krzysztof Stempak. Almost everywhere summability of Laguerre series. Studia Mathematica, Tome 100 (1991) no. 2, pp. 129-147. doi: 10.4064/sm-100-2-129-147
Cité par Sources :