Almost everywhere summability of Laguerre series
Studia Mathematica, Tome 100 (1991) no. 2, pp. 129-147

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We apply a construction of generalized twisted convolution to investigate almost everywhere summability of expansions with respect to the orthonormal system of functions $ℓ_n^a(x) = (n!/Γ(n+a+1))^{1/2} e^{-x/2} L_n^a(x)$, n = 0,1,2,..., in $L^2(ℝ_+, x^adx)$, a ≥ 0. We prove that the Cesàro means of order δ > a + 2/3 of any function $f ∈ L^p(x^adx)$, 1 ≤ p ≤ ∞, converge to f a.e. The main tool we use is a Hardy-Littlewood type maximal operator associated with a generalized Euclidean convolution.
DOI : 10.4064/sm-100-2-129-147
Keywords: Laguerre expansions, generalized twisted convolution, Riesz, Cesàro and Abel-Poisson means

Krzysztof Stempak 1

1
@article{10_4064_sm_100_2_129_147,
     author = {Krzysztof Stempak},
     title = {Almost everywhere summability of {Laguerre} series},
     journal = {Studia Mathematica},
     pages = {129--147},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {1991},
     doi = {10.4064/sm-100-2-129-147},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-129-147/}
}
TY  - JOUR
AU  - Krzysztof Stempak
TI  - Almost everywhere summability of Laguerre series
JO  - Studia Mathematica
PY  - 1991
SP  - 129
EP  - 147
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-129-147/
DO  - 10.4064/sm-100-2-129-147
LA  - en
ID  - 10_4064_sm_100_2_129_147
ER  - 
%0 Journal Article
%A Krzysztof Stempak
%T Almost everywhere summability of Laguerre series
%J Studia Mathematica
%D 1991
%P 129-147
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-129-147/
%R 10.4064/sm-100-2-129-147
%G en
%F 10_4064_sm_100_2_129_147
Krzysztof Stempak. Almost everywhere summability of Laguerre series. Studia Mathematica, Tome 100 (1991) no. 2, pp. 129-147. doi: 10.4064/sm-100-2-129-147

Cité par Sources :