Almost everywhere summability of Laguerre series
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 100 (1991) no. 2, pp. 129-147
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We apply a construction of generalized twisted convolution to investigate almost everywhere summability of expansions with respect to the orthonormal system of functions $ℓ_n^a(x) = (n!/Γ(n+a+1))^{1/2} e^{-x/2} L_n^a(x)$, n = 0,1,2,..., in $L^2(ℝ_+, x^adx)$, a ≥ 0. We prove that the Cesàro means of order δ > a + 2/3 of any function $f ∈ L^p(x^adx)$, 1 ≤ p ≤ ∞, converge to f a.e. The main tool we use is a Hardy-Littlewood type maximal operator associated with a generalized Euclidean convolution.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Laguerre expansions, generalized twisted convolution, Riesz, Cesàro and Abel-Poisson means
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Krzysztof Stempak 1
@article{10_4064_sm_100_2_129_147,
     author = {Krzysztof Stempak},
     title = {Almost everywhere summability of {Laguerre} series},
     journal = {Studia Mathematica},
     pages = {129--147},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {1991},
     doi = {10.4064/sm-100-2-129-147},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-129-147/}
}
                      
                      
                    TY - JOUR AU - Krzysztof Stempak TI - Almost everywhere summability of Laguerre series JO - Studia Mathematica PY - 1991 SP - 129 EP - 147 VL - 100 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-129-147/ DO - 10.4064/sm-100-2-129-147 LA - en ID - 10_4064_sm_100_2_129_147 ER -
Krzysztof Stempak. Almost everywhere summability of Laguerre series. Studia Mathematica, Tome 100 (1991) no. 2, pp. 129-147. doi: 10.4064/sm-100-2-129-147
Cité par Sources :
