On the principle of local reflexivity
Studia Mathematica, Tome 100 (1991) no. 2, pp. 109-128

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a version of the local reflexivity theorem which is, in a sense, the most general one: our main theorem characterizes the conditions which can be imposed additionally on the usual local reflexivity map provided that these conditions are of a certain general type. It is then shown how known and new local reflexivity theorems can be derived. In particular, the compatibility of the local reflexivity map with subspaces and operators is investigated.
DOI : 10.4064/sm-100-2-109-128

Ehrhard Behrends 1

1
@article{10_4064_sm_100_2_109_128,
     author = {Ehrhard Behrends},
     title = {On the principle of local reflexivity},
     journal = {Studia Mathematica},
     pages = {109--128},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {1991},
     doi = {10.4064/sm-100-2-109-128},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-109-128/}
}
TY  - JOUR
AU  - Ehrhard Behrends
TI  - On the principle of local reflexivity
JO  - Studia Mathematica
PY  - 1991
SP  - 109
EP  - 128
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-109-128/
DO  - 10.4064/sm-100-2-109-128
LA  - en
ID  - 10_4064_sm_100_2_109_128
ER  - 
%0 Journal Article
%A Ehrhard Behrends
%T On the principle of local reflexivity
%J Studia Mathematica
%D 1991
%P 109-128
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-100-2-109-128/
%R 10.4064/sm-100-2-109-128
%G en
%F 10_4064_sm_100_2_109_128
Ehrhard Behrends. On the principle of local reflexivity. Studia Mathematica, Tome 100 (1991) no. 2, pp. 109-128. doi: 10.4064/sm-100-2-109-128

Cité par Sources :