Weighted-BMO and the Hilbert transform
Studia Mathematica, Tome 100 (1991) no. 1, pp. 75-80

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In 1967, E. M. Stein proved that the Hilbert transform is bounded from $L^∞$ to BMO. In 1976, Muckenhoupt and Wheeden gave an analogue of Stein's result. They gave a necessary and sufficient condition for the boundedness of the Hilbert transform from $L^∞_w$. We improve the results of Muckenhoupt and Wheeden's and give a necessary and sufficient condition for the boundedness of the Hilbert transform from $BMO_w$ to $BMO_w$.
DOI : 10.4064/sm-100-1-75-80

Hui-Ming Jiang 1

1
@article{10_4064_sm_100_1_75_80,
     author = {Hui-Ming Jiang},
     title = {Weighted-BMO and the {Hilbert} transform},
     journal = {Studia Mathematica},
     pages = {75--80},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {1991},
     doi = {10.4064/sm-100-1-75-80},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-100-1-75-80/}
}
TY  - JOUR
AU  - Hui-Ming Jiang
TI  - Weighted-BMO and the Hilbert transform
JO  - Studia Mathematica
PY  - 1991
SP  - 75
EP  - 80
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-100-1-75-80/
DO  - 10.4064/sm-100-1-75-80
LA  - en
ID  - 10_4064_sm_100_1_75_80
ER  - 
%0 Journal Article
%A Hui-Ming Jiang
%T Weighted-BMO and the Hilbert transform
%J Studia Mathematica
%D 1991
%P 75-80
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-100-1-75-80/
%R 10.4064/sm-100-1-75-80
%G en
%F 10_4064_sm_100_1_75_80
Hui-Ming Jiang. Weighted-BMO and the Hilbert transform. Studia Mathematica, Tome 100 (1991) no. 1, pp. 75-80. doi: 10.4064/sm-100-1-75-80

Cité par Sources :