On products of Radon measures
Fundamenta Mathematicae, Tome 159 (1999) no. 1, pp. 71-84
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X = [0,1]^Γ$ with card Γ ≥ c (c denotes the continuum). We construct two Radon measures μ,ν on X such that there exist open subsets of X × X which are not measurable for the simple outer product measure. Moreover, these measures are strikingly similar to the Lebesgue product measure: for every finite F ⊆ Γ, the projections of μ and ν onto $[0,1]^F$ are equivalent to the F-dimensional Lebesgue measure. We generalize this construction to any compact group of weight ≥ c, by replacing the Lebesgue product measure with the Haar measure.
Affiliations des auteurs :
C. Gryllakis 1 ; S. Grekas 1
@article{10_4064_fm_1999_159_1_1_71_84,
author = {C. Gryllakis and S. Grekas},
title = {On products of {Radon} measures},
journal = {Fundamenta Mathematicae},
pages = {71--84},
publisher = {mathdoc},
volume = {159},
number = {1},
year = {1999},
doi = {10.4064/fm_1999_159_1_1_71_84},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_159_1_1_71_84/}
}
TY - JOUR AU - C. Gryllakis AU - S. Grekas TI - On products of Radon measures JO - Fundamenta Mathematicae PY - 1999 SP - 71 EP - 84 VL - 159 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_159_1_1_71_84/ DO - 10.4064/fm_1999_159_1_1_71_84 LA - en ID - 10_4064_fm_1999_159_1_1_71_84 ER -
C. Gryllakis; S. Grekas. On products of Radon measures. Fundamenta Mathematicae, Tome 159 (1999) no. 1, pp. 71-84. doi: 10.4064/fm_1999_159_1_1_71_84
Cité par Sources :