On products of Radon measures
Fundamenta Mathematicae, Tome 159 (1999) no. 1, pp. 71-84.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X = [0,1]^Γ$ with card Γ ≥ c (c denotes the continuum). We construct two Radon measures μ,ν on X such that there exist open subsets of X × X which are not measurable for the simple outer product measure. Moreover, these measures are strikingly similar to the Lebesgue product measure: for every finite F ⊆ Γ, the projections of μ and ν onto $[0,1]^F$ are equivalent to the F-dimensional Lebesgue measure. We generalize this construction to any compact group of weight ≥ c, by replacing the Lebesgue product measure with the Haar measure.
DOI : 10.4064/fm_1999_159_1_1_71_84

C. Gryllakis 1 ; S. Grekas 1

1
@article{10_4064_fm_1999_159_1_1_71_84,
     author = {C. Gryllakis and S. Grekas},
     title = {On products of {Radon} measures},
     journal = {Fundamenta Mathematicae},
     pages = {71--84},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {1999},
     doi = {10.4064/fm_1999_159_1_1_71_84},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_159_1_1_71_84/}
}
TY  - JOUR
AU  - C. Gryllakis
AU  - S. Grekas
TI  - On products of Radon measures
JO  - Fundamenta Mathematicae
PY  - 1999
SP  - 71
EP  - 84
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_159_1_1_71_84/
DO  - 10.4064/fm_1999_159_1_1_71_84
LA  - en
ID  - 10_4064_fm_1999_159_1_1_71_84
ER  - 
%0 Journal Article
%A C. Gryllakis
%A S. Grekas
%T On products of Radon measures
%J Fundamenta Mathematicae
%D 1999
%P 71-84
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_159_1_1_71_84/
%R 10.4064/fm_1999_159_1_1_71_84
%G en
%F 10_4064_fm_1999_159_1_1_71_84
C. Gryllakis; S. Grekas. On products of Radon measures. Fundamenta Mathematicae, Tome 159 (1999) no. 1, pp. 71-84. doi : 10.4064/fm_1999_159_1_1_71_84. http://geodesic.mathdoc.fr/articles/10.4064/fm_1999_159_1_1_71_84/

Cité par Sources :