Density of periodic orbit measures for transformations on the interval with two monotonic pieces
Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 221-234
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Transformations T:[0,1] → [0,1] with two monotonic pieces are considered. Under the assumption that T is topologically transitive and $h_{top}(T) > 0$, it is proved that the invariant measures concentrated on periodic orbits are dense in the set of all invariant probability measures.
Keywords:
piecewise monotonic map, invariant measure, periodic orbit measure, Markov diagram
@article{10_4064_fm_1998_157_2_3_1_221_234,
author = {Franz Hofbauer and Peter Raith},
title = {Density of periodic orbit measures for transformations on the interval with two monotonic pieces},
journal = {Fundamenta Mathematicae},
pages = {221--234},
year = {1998},
volume = {157},
number = {2},
doi = {10.4064/fm_1998_157_2-3_1_221_234},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1998_157_2-3_1_221_234/}
}
TY - JOUR AU - Franz Hofbauer AU - Peter Raith TI - Density of periodic orbit measures for transformations on the interval with two monotonic pieces JO - Fundamenta Mathematicae PY - 1998 SP - 221 EP - 234 VL - 157 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1998_157_2-3_1_221_234/ DO - 10.4064/fm_1998_157_2-3_1_221_234 LA - en ID - 10_4064_fm_1998_157_2_3_1_221_234 ER -
%0 Journal Article %A Franz Hofbauer %A Peter Raith %T Density of periodic orbit measures for transformations on the interval with two monotonic pieces %J Fundamenta Mathematicae %D 1998 %P 221-234 %V 157 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/fm_1998_157_2-3_1_221_234/ %R 10.4064/fm_1998_157_2-3_1_221_234 %G en %F 10_4064_fm_1998_157_2_3_1_221_234
Franz Hofbauer; Peter Raith. Density of periodic orbit measures for transformations on the interval with two monotonic pieces. Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 221-234. doi: 10.4064/fm_1998_157_2-3_1_221_234
Cité par Sources :