Conformal measures for rational functions revisited
Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 161-173
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism.
Affiliations des auteurs :
M. Denker 1 ; R. D. Mauldin 1 ; Z. Nitecki 1 ; M. Urbański 1
@article{10_4064_fm_1998_157_2_3_1_161_173,
author = {M. Denker and R. D. Mauldin and Z. Nitecki and M. Urba\'nski},
title = {Conformal measures for rational functions revisited},
journal = {Fundamenta Mathematicae},
pages = {161--173},
publisher = {mathdoc},
volume = {157},
number = {2},
year = {1998},
doi = {10.4064/fm_1998_157_2-3_1_161_173},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1998_157_2-3_1_161_173/}
}
TY - JOUR AU - M. Denker AU - R. D. Mauldin AU - Z. Nitecki AU - M. Urbański TI - Conformal measures for rational functions revisited JO - Fundamenta Mathematicae PY - 1998 SP - 161 EP - 173 VL - 157 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1998_157_2-3_1_161_173/ DO - 10.4064/fm_1998_157_2-3_1_161_173 LA - en ID - 10_4064_fm_1998_157_2_3_1_161_173 ER -
%0 Journal Article %A M. Denker %A R. D. Mauldin %A Z. Nitecki %A M. Urbański %T Conformal measures for rational functions revisited %J Fundamenta Mathematicae %D 1998 %P 161-173 %V 157 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm_1998_157_2-3_1_161_173/ %R 10.4064/fm_1998_157_2-3_1_161_173 %G en %F 10_4064_fm_1998_157_2_3_1_161_173
M. Denker; R. D. Mauldin; Z. Nitecki; M. Urbański. Conformal measures for rational functions revisited. Fundamenta Mathematicae, Tome 157 (1998) no. 2, pp. 161-173. doi: 10.4064/fm_1998_157_2-3_1_161_173
Cité par Sources :