Correlation dimension for self-similar Cantor sets with overlaps
Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 293-300.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a classification theorem of the "Glimm-Effros" type for Borel order relations: a Borel partial order on the reals either is Borel linearizable or includes a copy of a certain Borel partial order $≤_0$ which is not Borel linearizable.
DOI : 10.4064/fm_1998_155_3_1_293_300
Keywords: Borel partial order, Borel linear order

Károly Simon 1 ; Boris Solomyak 1

1
@article{10_4064_fm_1998_155_3_1_293_300,
     author = {K\'aroly Simon and Boris Solomyak},
     title = {Correlation dimension for self-similar {Cantor} sets with overlaps},
     journal = {Fundamenta Mathematicae},
     pages = {293--300},
     publisher = {mathdoc},
     volume = {155},
     number = {3},
     year = {1998},
     doi = {10.4064/fm_1998_155_3_1_293_300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1998_155_3_1_293_300/}
}
TY  - JOUR
AU  - Károly Simon
AU  - Boris Solomyak
TI  - Correlation dimension for self-similar Cantor sets with overlaps
JO  - Fundamenta Mathematicae
PY  - 1998
SP  - 293
EP  - 300
VL  - 155
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm_1998_155_3_1_293_300/
DO  - 10.4064/fm_1998_155_3_1_293_300
LA  - en
ID  - 10_4064_fm_1998_155_3_1_293_300
ER  - 
%0 Journal Article
%A Károly Simon
%A Boris Solomyak
%T Correlation dimension for self-similar Cantor sets with overlaps
%J Fundamenta Mathematicae
%D 1998
%P 293-300
%V 155
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm_1998_155_3_1_293_300/
%R 10.4064/fm_1998_155_3_1_293_300
%G en
%F 10_4064_fm_1998_155_3_1_293_300
Károly Simon; Boris Solomyak. Correlation dimension for self-similar Cantor sets with overlaps. Fundamenta Mathematicae, Tome 155 (1998) no. 3, pp. 293-300. doi : 10.4064/fm_1998_155_3_1_293_300. http://geodesic.mathdoc.fr/articles/10.4064/fm_1998_155_3_1_293_300/

Cité par Sources :