Property $C''$, strong measure zero sets and subsets of the plane
Fundamenta Mathematicae, Tome 153 (1997) no. 3, pp. 277-293
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let X be a set of reals. We show that • X has property C" of Rothberger iff for all closed F ⊆ ℝ × ℝ with vertical sections $F_x$ (x ∈ X) null, $∪_{x ∈ X}F_x$ is null; • X has strong measure zero iff for all closed F ⊆ ℝ × ℝ with all vertical sections $F_x$ (x ∈ ℝ) null, $∪_{x ∈ X}F_x$ is null.
@article{10_4064_fm_1997_153_3_1_277_293,
author = {Janusz Pawlikowski},
title = {Property $C''$, strong measure zero sets and subsets of the plane},
journal = {Fundamenta Mathematicae},
pages = {277--293},
publisher = {mathdoc},
volume = {153},
number = {3},
year = {1997},
doi = {10.4064/fm_1997_153_3_1_277_293},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_153_3_1_277_293/}
}
TY - JOUR AU - Janusz Pawlikowski TI - Property $C''$, strong measure zero sets and subsets of the plane JO - Fundamenta Mathematicae PY - 1997 SP - 277 EP - 293 VL - 153 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_153_3_1_277_293/ DO - 10.4064/fm_1997_153_3_1_277_293 LA - en ID - 10_4064_fm_1997_153_3_1_277_293 ER -
%0 Journal Article %A Janusz Pawlikowski %T Property $C''$, strong measure zero sets and subsets of the plane %J Fundamenta Mathematicae %D 1997 %P 277-293 %V 153 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_153_3_1_277_293/ %R 10.4064/fm_1997_153_3_1_277_293 %G en %F 10_4064_fm_1997_153_3_1_277_293
Janusz Pawlikowski. Property $C''$, strong measure zero sets and subsets of the plane. Fundamenta Mathematicae, Tome 153 (1997) no. 3, pp. 277-293. doi: 10.4064/fm_1997_153_3_1_277_293
Cité par Sources :