Interpreting reflexive theories in finitely many axioms
Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 99-116
For finitely axiomatized sequential theories F and reflexive theories R, we give a characterization of the relation 'F interprets R' in terms of provability of restricted consistency statements on cuts. This characterization is used in a proof that the set of $∏_1$ (as well as $∑_1$) sentences π such that GB interprets ZF+π is $Σ^0_3$-complete.
@article{10_4064_fm_1997_152_2_1_99_116,
author = {V. Yu. Shavrukov},
title = {Interpreting reflexive theories in finitely many axioms},
journal = {Fundamenta Mathematicae},
pages = {99--116},
year = {1997},
volume = {152},
number = {2},
doi = {10.4064/fm_1997_152_2_1_99_116},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_2_1_99_116/}
}
TY - JOUR AU - V. Yu. Shavrukov TI - Interpreting reflexive theories in finitely many axioms JO - Fundamenta Mathematicae PY - 1997 SP - 99 EP - 116 VL - 152 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_2_1_99_116/ DO - 10.4064/fm_1997_152_2_1_99_116 LA - en ID - 10_4064_fm_1997_152_2_1_99_116 ER -
V. Yu. Shavrukov. Interpreting reflexive theories in finitely many axioms. Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 99-116. doi: 10.4064/fm_1997_152_2_1_99_116
Cité par Sources :