Interpreting reflexive theories in finitely many axioms
Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 99-116.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For finitely axiomatized sequential theories F and reflexive theories R, we give a characterization of the relation 'F interprets R' in terms of provability of restricted consistency statements on cuts. This characterization is used in a proof that the set of $∏_1$ (as well as $∑_1$) sentences π such that GB interprets ZF+π is $Σ^0_3$-complete.
DOI : 10.4064/fm_1997_152_2_1_99_116

V. Yu. Shavrukov 1

1
@article{10_4064_fm_1997_152_2_1_99_116,
     author = {V. Yu. Shavrukov},
     title = {Interpreting reflexive theories in finitely many axioms},
     journal = {Fundamenta Mathematicae},
     pages = {99--116},
     publisher = {mathdoc},
     volume = {152},
     number = {2},
     year = {1997},
     doi = {10.4064/fm_1997_152_2_1_99_116},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_2_1_99_116/}
}
TY  - JOUR
AU  - V. Yu. Shavrukov
TI  - Interpreting reflexive theories in finitely many axioms
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 99
EP  - 116
VL  - 152
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_2_1_99_116/
DO  - 10.4064/fm_1997_152_2_1_99_116
LA  - en
ID  - 10_4064_fm_1997_152_2_1_99_116
ER  - 
%0 Journal Article
%A V. Yu. Shavrukov
%T Interpreting reflexive theories in finitely many axioms
%J Fundamenta Mathematicae
%D 1997
%P 99-116
%V 152
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_2_1_99_116/
%R 10.4064/fm_1997_152_2_1_99_116
%G en
%F 10_4064_fm_1997_152_2_1_99_116
V. Yu. Shavrukov. Interpreting reflexive theories in finitely many axioms. Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 99-116. doi : 10.4064/fm_1997_152_2_1_99_116. http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_2_1_99_116/

Cité par Sources :