On infinite partitions of lines and space
Fundamenta Mathematicae, Tome 152 (1997) no. 1, pp. 75-95
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given a partition P:L → ω of the lines in $ℝ^n$, n ≥ 2, into countably many pieces, we ask if it is possible to find a partition of the points, $Q:ℝ^n → ω$, so that each line meets at most m points of its color. Assuming Martin's Axiom, we show this is the case for m ≥ 3. We reduce the problem for m = 2 to a purely finitary geometry problem. Although we have established a very similar, but somewhat simpler, version of the geometry conjecture, we leave the general problem open. We consider also various generalizations of these results, including to higher dimension spaces and planes.
Keywords:
transfinite recursion, Martin's Axiom, forcing, geometry, infinite partitions
@article{10_4064_fm_1997_152_1_1_75_95,
author = {P. Erd\H{o}s and Steve Jackson and Daniel Mauldin},
title = {On infinite partitions of lines and space},
journal = {Fundamenta Mathematicae},
pages = {75--95},
year = {1997},
volume = {152},
number = {1},
doi = {10.4064/fm_1997_152_1_1_75_95},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_75_95/}
}
TY - JOUR AU - P. Erdős AU - Steve Jackson AU - Daniel Mauldin TI - On infinite partitions of lines and space JO - Fundamenta Mathematicae PY - 1997 SP - 75 EP - 95 VL - 152 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_75_95/ DO - 10.4064/fm_1997_152_1_1_75_95 LA - en ID - 10_4064_fm_1997_152_1_1_75_95 ER -
%0 Journal Article %A P. Erdős %A Steve Jackson %A Daniel Mauldin %T On infinite partitions of lines and space %J Fundamenta Mathematicae %D 1997 %P 75-95 %V 152 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_75_95/ %R 10.4064/fm_1997_152_1_1_75_95 %G en %F 10_4064_fm_1997_152_1_1_75_95
P. Erdős; Steve Jackson; Daniel Mauldin. On infinite partitions of lines and space. Fundamenta Mathematicae, Tome 152 (1997) no. 1, pp. 75-95. doi: 10.4064/fm_1997_152_1_1_75_95
Cité par Sources :