On infinite partitions of lines and space
Fundamenta Mathematicae, Tome 152 (1997) no. 1, pp. 75-95.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a partition P:L → ω of the lines in $ℝ^n$, n ≥ 2, into countably many pieces, we ask if it is possible to find a partition of the points, $Q:ℝ^n → ω$, so that each line meets at most m points of its color. Assuming Martin's Axiom, we show this is the case for m ≥ 3. We reduce the problem for m = 2 to a purely finitary geometry problem. Although we have established a very similar, but somewhat simpler, version of the geometry conjecture, we leave the general problem open. We consider also various generalizations of these results, including to higher dimension spaces and planes.
DOI : 10.4064/fm_1997_152_1_1_75_95
Keywords: transfinite recursion, Martin's Axiom, forcing, geometry, infinite partitions

P. Erdős 1 ; Steve Jackson 1 ; Daniel Mauldin 1

1
@article{10_4064_fm_1997_152_1_1_75_95,
     author = {P. Erd\H{o}s and Steve Jackson and Daniel Mauldin},
     title = {On infinite partitions of lines and space},
     journal = {Fundamenta Mathematicae},
     pages = {75--95},
     publisher = {mathdoc},
     volume = {152},
     number = {1},
     year = {1997},
     doi = {10.4064/fm_1997_152_1_1_75_95},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_75_95/}
}
TY  - JOUR
AU  - P. Erdős
AU  - Steve Jackson
AU  - Daniel Mauldin
TI  - On infinite partitions of lines and space
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 75
EP  - 95
VL  - 152
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_75_95/
DO  - 10.4064/fm_1997_152_1_1_75_95
LA  - en
ID  - 10_4064_fm_1997_152_1_1_75_95
ER  - 
%0 Journal Article
%A P. Erdős
%A Steve Jackson
%A Daniel Mauldin
%T On infinite partitions of lines and space
%J Fundamenta Mathematicae
%D 1997
%P 75-95
%V 152
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_75_95/
%R 10.4064/fm_1997_152_1_1_75_95
%G en
%F 10_4064_fm_1997_152_1_1_75_95
P. Erdős; Steve Jackson; Daniel Mauldin. On infinite partitions of lines and space. Fundamenta Mathematicae, Tome 152 (1997) no. 1, pp. 75-95. doi : 10.4064/fm_1997_152_1_1_75_95. http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_75_95/

Cité par Sources :