An ordinal version of some applications of the classical interpolation theorem
Fundamenta Mathematicae, Tome 152 (1997) no. 1, pp. 55-74
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let E be a Banach space with a separable dual. Zippin's theorem asserts that E embeds in a Banach space $E_1$ with a shrinking basis, and W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński have shown that E is a quotient of a Banach space $E_2$ with a shrinking basis. These two results use the interpolation theorem established by W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński. Here, we prove that the Szlenk indices of $E_1$ and $E_2$ can be controlled by the Szlenk index of E, where the Szlenk index is an ordinal index associated with a separable Banach space which provides a transfinite measure of the separability of the dual space.
@article{10_4064_fm_1997_152_1_1_55_74,
author = {Beno{\^\i}t Bossard},
title = {An ordinal version of some applications of the classical interpolation theorem},
journal = {Fundamenta Mathematicae},
pages = {55--74},
publisher = {mathdoc},
volume = {152},
number = {1},
year = {1997},
doi = {10.4064/fm_1997_152_1_1_55_74},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_55_74/}
}
TY - JOUR AU - Benoît Bossard TI - An ordinal version of some applications of the classical interpolation theorem JO - Fundamenta Mathematicae PY - 1997 SP - 55 EP - 74 VL - 152 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_55_74/ DO - 10.4064/fm_1997_152_1_1_55_74 LA - en ID - 10_4064_fm_1997_152_1_1_55_74 ER -
%0 Journal Article %A Benoît Bossard %T An ordinal version of some applications of the classical interpolation theorem %J Fundamenta Mathematicae %D 1997 %P 55-74 %V 152 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_55_74/ %R 10.4064/fm_1997_152_1_1_55_74 %G en %F 10_4064_fm_1997_152_1_1_55_74
Benoît Bossard. An ordinal version of some applications of the classical interpolation theorem. Fundamenta Mathematicae, Tome 152 (1997) no. 1, pp. 55-74. doi: 10.4064/fm_1997_152_1_1_55_74
Cité par Sources :