Extending real-valued functions in $\beta_k$
Fundamenta Mathematicae, Tome 152 (1997) no. 1, pp. 21-41
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
An Open Coloring Axiom type principle is formulated for uncountable cardinals and is shown to be a consequence of the Proper Forcing Axiom. Several applications are found. We also study dense C*-embedded subspaces of ω*, showing that there can be such sets of cardinality $\mathfrak c$ and that it is consistent that ω*\{p} is C*-embedded for some but not all p ∈ ω*.
@article{10_4064_fm_1997_152_1_1_21_41,
author = {Alan Dow},
title = {Extending real-valued functions in $\beta_k$},
journal = {Fundamenta Mathematicae},
pages = {21--41},
publisher = {mathdoc},
volume = {152},
number = {1},
year = {1997},
doi = {10.4064/fm_1997_152_1_1_21_41},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_21_41/}
}
TY - JOUR AU - Alan Dow TI - Extending real-valued functions in $\beta_k$ JO - Fundamenta Mathematicae PY - 1997 SP - 21 EP - 41 VL - 152 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_21_41/ DO - 10.4064/fm_1997_152_1_1_21_41 LA - en ID - 10_4064_fm_1997_152_1_1_21_41 ER -
Alan Dow. Extending real-valued functions in $\beta_k$. Fundamenta Mathematicae, Tome 152 (1997) no. 1, pp. 21-41. doi: 10.4064/fm_1997_152_1_1_21_41
Cité par Sources :