Extending real-valued functions in $\beta_k$
Fundamenta Mathematicae, Tome 152 (1997) no. 1, pp. 21-41.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An Open Coloring Axiom type principle is formulated for uncountable cardinals and is shown to be a consequence of the Proper Forcing Axiom. Several applications are found. We also study dense C*-embedded subspaces of ω*, showing that there can be such sets of cardinality $\mathfrak c$ and that it is consistent that ω*\{p} is C*-embedded for some but not all p ∈ ω*.
DOI : 10.4064/fm_1997_152_1_1_21_41

Alan Dow 1

1
@article{10_4064_fm_1997_152_1_1_21_41,
     author = {Alan Dow},
     title = {Extending real-valued functions in $\beta_k$},
     journal = {Fundamenta Mathematicae},
     pages = {21--41},
     publisher = {mathdoc},
     volume = {152},
     number = {1},
     year = {1997},
     doi = {10.4064/fm_1997_152_1_1_21_41},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_21_41/}
}
TY  - JOUR
AU  - Alan Dow
TI  - Extending real-valued functions in $\beta_k$
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 21
EP  - 41
VL  - 152
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_21_41/
DO  - 10.4064/fm_1997_152_1_1_21_41
LA  - en
ID  - 10_4064_fm_1997_152_1_1_21_41
ER  - 
%0 Journal Article
%A Alan Dow
%T Extending real-valued functions in $\beta_k$
%J Fundamenta Mathematicae
%D 1997
%P 21-41
%V 152
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_21_41/
%R 10.4064/fm_1997_152_1_1_21_41
%G en
%F 10_4064_fm_1997_152_1_1_21_41
Alan Dow. Extending real-valued functions in $\beta_k$. Fundamenta Mathematicae, Tome 152 (1997) no. 1, pp. 21-41. doi : 10.4064/fm_1997_152_1_1_21_41. http://geodesic.mathdoc.fr/articles/10.4064/fm_1997_152_1_1_21_41/

Cité par Sources :