Categoricity of theories in $L_{\kappa\omega}$, when $\kappa$ is a measurable cardinal. Part 1
Fundamenta Mathematicae, Tome 151 (1996) no. 3, pp. 209-240.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We assume a theory T in the logic $L_{κω}$ is categorical in a cardinal λ \≥ κ, and κ is a measurable cardinal. We prove that the class of models of T of cardinality λ (but ≥ |T|+κ) has the amalgamation property; this is a step toward understanding the character of such classes of models.
DOI : 10.4064/fm_1996_151_3_1_209_240

Saharon Shelah 1 ; Oren Kolman 1

1
@article{10_4064_fm_1996_151_3_1_209_240,
     author = {Saharon Shelah and Oren Kolman},
     title = {Categoricity of theories in $L_{\kappa\omega}$, when $\kappa$ is a measurable cardinal. {Part} 1},
     journal = {Fundamenta Mathematicae},
     pages = {209--240},
     publisher = {mathdoc},
     volume = {151},
     number = {3},
     year = {1996},
     doi = {10.4064/fm_1996_151_3_1_209_240},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1996_151_3_1_209_240/}
}
TY  - JOUR
AU  - Saharon Shelah
AU  - Oren Kolman
TI  - Categoricity of theories in $L_{\kappa\omega}$, when $\kappa$ is a measurable cardinal. Part 1
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 209
EP  - 240
VL  - 151
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm_1996_151_3_1_209_240/
DO  - 10.4064/fm_1996_151_3_1_209_240
LA  - en
ID  - 10_4064_fm_1996_151_3_1_209_240
ER  - 
%0 Journal Article
%A Saharon Shelah
%A Oren Kolman
%T Categoricity of theories in $L_{\kappa\omega}$, when $\kappa$ is a measurable cardinal. Part 1
%J Fundamenta Mathematicae
%D 1996
%P 209-240
%V 151
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm_1996_151_3_1_209_240/
%R 10.4064/fm_1996_151_3_1_209_240
%G en
%F 10_4064_fm_1996_151_3_1_209_240
Saharon Shelah; Oren Kolman. Categoricity of theories in $L_{\kappa\omega}$, when $\kappa$ is a measurable cardinal. Part 1. Fundamenta Mathematicae, Tome 151 (1996) no. 3, pp. 209-240. doi : 10.4064/fm_1996_151_3_1_209_240. http://geodesic.mathdoc.fr/articles/10.4064/fm_1996_151_3_1_209_240/

Cité par Sources :