Categoricity of theories in $L_{\kappa\omega}$, when $\kappa$ is a measurable cardinal. Part 1
Fundamenta Mathematicae, Tome 151 (1996) no. 3, pp. 209-240
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We assume a theory T in the logic $L_{κω}$ is categorical in a cardinal λ \≥ κ, and κ is a measurable cardinal. We prove that the class of models of T of cardinality λ (but ≥ |T|+κ) has the amalgamation property; this is a step toward understanding the character of such classes of models.
Affiliations des auteurs :
Saharon Shelah 1 ; Oren Kolman 1
@article{10_4064_fm_1996_151_3_1_209_240,
author = {Saharon Shelah and Oren Kolman},
title = {Categoricity of theories in $L_{\kappa\omega}$, when $\kappa$ is a measurable cardinal. {Part} 1},
journal = {Fundamenta Mathematicae},
pages = {209--240},
publisher = {mathdoc},
volume = {151},
number = {3},
year = {1996},
doi = {10.4064/fm_1996_151_3_1_209_240},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1996_151_3_1_209_240/}
}
TY - JOUR
AU - Saharon Shelah
AU - Oren Kolman
TI - Categoricity of theories in $L_{\kappa\omega}$, when $\kappa$ is a measurable cardinal. Part 1
JO - Fundamenta Mathematicae
PY - 1996
SP - 209
EP - 240
VL - 151
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1996_151_3_1_209_240/
DO - 10.4064/fm_1996_151_3_1_209_240
LA - en
ID - 10_4064_fm_1996_151_3_1_209_240
ER -
%0 Journal Article
%A Saharon Shelah
%A Oren Kolman
%T Categoricity of theories in $L_{\kappa\omega}$, when $\kappa$ is a measurable cardinal. Part 1
%J Fundamenta Mathematicae
%D 1996
%P 209-240
%V 151
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm_1996_151_3_1_209_240/
%R 10.4064/fm_1996_151_3_1_209_240
%G en
%F 10_4064_fm_1996_151_3_1_209_240
Saharon Shelah; Oren Kolman. Categoricity of theories in $L_{\kappa\omega}$, when $\kappa$ is a measurable cardinal. Part 1. Fundamenta Mathematicae, Tome 151 (1996) no. 3, pp. 209-240. doi: 10.4064/fm_1996_151_3_1_209_240
Cité par Sources :