Remarks on $\mathcal P_{\kappa}\lambda$-combinatorics
Fundamenta Mathematicae, Tome 145 (1994) no. 2, pp. 141-151
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that $\{x \in \mathcal P_\kappa \lambda\mid x \cap \kappa$ is almost $x$-ineffable$\}$ has $p_*({\rm NIn}_{\kappa, \lambda^{\kappa}})$-measure 1 and $\{x \in\mathcal P_\kappa\lambda\mid x \cap \kappa$ is $x$-ineffable$\}$ has I-measure 1, where $\mathcal I$ is the complete ineffable ideal on $\mathcal P_\kappa\lambda$. As corollaries, we show that $\lambda$-ineffability does not imply complete $\lambda$-ineffability and that almost $\lambda$-ineffability does not imply $\lambda$-ineffability.
@article{10_4064_fm_1994_145_2_1_141_151,
author = {Shizuo Kamo},
title = {Remarks on $\mathcal P_{\kappa}\lambda$-combinatorics},
journal = {Fundamenta Mathematicae},
pages = {141--151},
year = {1994},
volume = {145},
number = {2},
doi = {10.4064/fm_1994_145_2_1_141_151},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1994_145_2_1_141_151/}
}
TY - JOUR
AU - Shizuo Kamo
TI - Remarks on $\mathcal P_{\kappa}\lambda$-combinatorics
JO - Fundamenta Mathematicae
PY - 1994
SP - 141
EP - 151
VL - 145
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1994_145_2_1_141_151/
DO - 10.4064/fm_1994_145_2_1_141_151
LA - en
ID - 10_4064_fm_1994_145_2_1_141_151
ER -
Shizuo Kamo. Remarks on $\mathcal P_{\kappa}\lambda$-combinatorics. Fundamenta Mathematicae, Tome 145 (1994) no. 2, pp. 141-151. doi: 10.4064/fm_1994_145_2_1_141_151
Cité par Sources :