On tame repetitive algebras
Fundamenta Mathematicae, Tome 142 (1993) no. 1, pp. 59-84
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let A be a finite dimensional algebra over an algebraically closed field, and denote by T(A) (respectively, Â) the trivial extension of A by its minimal injective cogenerator bimodule (respectively, the repetitive algebra of A). We characterise the algebras A such that  is tame and exhaustive, that is, the push-down functor mod  → mod T(A) associated with the covering functor  → T(A)\nsimto Â/(ν_A)$ is dense. We show that, if  is tame and exhaustive, then A is simply connected if and only if A is not an iterated tilted algebra of type $Â_m$. Then we prove that  is tame and exhaustive if and only if A is tilting-cotilting equivalent to an algebra which is either hereditary of Dynkin or Euclidean type or is tubular canonical.
Affiliations des auteurs :
Ibrahim Assem 1 ; Andrzej Skowroński 2
@article{10_4064_fm_1993_142_1_1_59_84,
author = {Ibrahim Assem and Andrzej Skowro\'nski},
title = {On tame repetitive algebras},
journal = {Fundamenta Mathematicae},
pages = {59--84},
publisher = {mathdoc},
volume = {142},
number = {1},
year = {1993},
doi = {10.4064/fm_1993_142_1_1_59_84},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1993_142_1_1_59_84/}
}
TY - JOUR AU - Ibrahim Assem AU - Andrzej Skowroński TI - On tame repetitive algebras JO - Fundamenta Mathematicae PY - 1993 SP - 59 EP - 84 VL - 142 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm_1993_142_1_1_59_84/ DO - 10.4064/fm_1993_142_1_1_59_84 LA - en ID - 10_4064_fm_1993_142_1_1_59_84 ER -
Ibrahim Assem; Andrzej Skowroński. On tame repetitive algebras. Fundamenta Mathematicae, Tome 142 (1993) no. 1, pp. 59-84. doi: 10.4064/fm_1993_142_1_1_59_84
Cité par Sources :