Open subspaces of countable dense homogeneous spaces
Fundamenta Mathematicae, Tome 141 (1992) no. 2, pp. 101-108.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct a completely regular space which is connected, locally connected and countable dense homogeneous but not strongly locally homogeneous. The space has an open subset which has a unique cut-point. We use the construction of a $C^1$-diffeomorphism of the plane which takes one countable dense set to another.
DOI : 10.4064/fm_1992_141_2_1_101_108

Stephen Watson 1 ; Petr Simon 2

1 Department of Mathematics York University North York, Ontario Canada M3J 1P3
2 Matematický Ústav University Karlov Sokolovská 83 18 600 Praha 8, Czechoslovakia
@article{10_4064_fm_1992_141_2_1_101_108,
     author = {Stephen Watson and Petr Simon},
     title = {Open subspaces of countable dense homogeneous spaces},
     journal = {Fundamenta Mathematicae},
     pages = {101--108},
     publisher = {mathdoc},
     volume = {141},
     number = {2},
     year = {1992},
     doi = {10.4064/fm_1992_141_2_1_101_108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm_1992_141_2_1_101_108/}
}
TY  - JOUR
AU  - Stephen Watson
AU  - Petr Simon
TI  - Open subspaces of countable dense homogeneous spaces
JO  - Fundamenta Mathematicae
PY  - 1992
SP  - 101
EP  - 108
VL  - 141
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm_1992_141_2_1_101_108/
DO  - 10.4064/fm_1992_141_2_1_101_108
LA  - en
ID  - 10_4064_fm_1992_141_2_1_101_108
ER  - 
%0 Journal Article
%A Stephen Watson
%A Petr Simon
%T Open subspaces of countable dense homogeneous spaces
%J Fundamenta Mathematicae
%D 1992
%P 101-108
%V 141
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm_1992_141_2_1_101_108/
%R 10.4064/fm_1992_141_2_1_101_108
%G en
%F 10_4064_fm_1992_141_2_1_101_108
Stephen Watson; Petr Simon. Open subspaces of countable dense homogeneous spaces. Fundamenta Mathematicae, Tome 141 (1992) no. 2, pp. 101-108. doi : 10.4064/fm_1992_141_2_1_101_108. http://geodesic.mathdoc.fr/articles/10.4064/fm_1992_141_2_1_101_108/

Cité par Sources :