Arhangel'skiĭ sheaf amalgamations in topological groups
Fundamenta Mathematicae, Tome 232 (2016) no. 3, pp. 281-293.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider amalgamation properties of convergent sequences in topological groups and topological vector spaces. The main result of this paper is that, for arbitrary topological groups, Nyikos’s property $\alpha _{1.5}$ is equivalent to Arhangel’skiĭ’s formally stronger property $\alpha _1$. This result solves a problem of Shakhmatov (2002), and its proof uses a new perturbation argument. We also prove that there is a topological space $X$ such that the space ${\rm C_{p}}(X)$ of continuous real-valued functions on $X$ with the topology of pointwise convergence has Arhangel’skiĭ’s property $\alpha _1$ but is not countably tight. This follows from results of Arhangel’skiĭ–Pytkeev, Moore and Todorčević, and provides a new solution, with stronger properties than the earlier solution, of a problem of Averbukh and Smolyanov (1968) concerning topological vector spaces.
DOI : 10.4064/fm994-1-2016
Keywords: consider amalgamation properties convergent sequences topological groups topological vector spaces main result paper arbitrary topological groups nyikos property alpha equivalent arhangel ski formally stronger property alpha result solves problem shakhmatov its proof uses perturbation argument prove there topological space space continuous real valued functions topology pointwise convergence has arhangel ski property alpha countably tight follows results arhangel ski pytkeev moore todor evi provides solution stronger properties earlier solution problem averbukh smolyanov concerning topological vector spaces

Boaz Tsaban 1 ; Lyubomyr Zdomskyy 2

1 Department of Mathematics Bar-Ilan University Ramat Gan 5290002, Israel and Department of Mathematics Weizmann Institute of Science Rehovot 7610001, Israel
2 Kurt Gödel Research Center for Mathematical Logic University of Vienna Währinger Str. 25 1090 Wien, Austria
@article{10_4064_fm994_1_2016,
     author = {Boaz Tsaban and Lyubomyr Zdomskyy},
     title = {Arhangel'ski\u{i} sheaf amalgamations in topological groups},
     journal = {Fundamenta Mathematicae},
     pages = {281--293},
     publisher = {mathdoc},
     volume = {232},
     number = {3},
     year = {2016},
     doi = {10.4064/fm994-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm994-1-2016/}
}
TY  - JOUR
AU  - Boaz Tsaban
AU  - Lyubomyr Zdomskyy
TI  - Arhangel'skiĭ sheaf amalgamations in topological groups
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 281
EP  - 293
VL  - 232
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm994-1-2016/
DO  - 10.4064/fm994-1-2016
LA  - en
ID  - 10_4064_fm994_1_2016
ER  - 
%0 Journal Article
%A Boaz Tsaban
%A Lyubomyr Zdomskyy
%T Arhangel'skiĭ sheaf amalgamations in topological groups
%J Fundamenta Mathematicae
%D 2016
%P 281-293
%V 232
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm994-1-2016/
%R 10.4064/fm994-1-2016
%G en
%F 10_4064_fm994_1_2016
Boaz Tsaban; Lyubomyr Zdomskyy. Arhangel'skiĭ sheaf amalgamations in topological groups. Fundamenta Mathematicae, Tome 232 (2016) no. 3, pp. 281-293. doi : 10.4064/fm994-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm994-1-2016/

Cité par Sources :