Arhangel'skiĭ sheaf amalgamations in topological groups
Fundamenta Mathematicae, Tome 232 (2016) no. 3, pp. 281-293
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider amalgamation properties of convergent sequences in topological groups and topological vector spaces. The main result of this paper is that, for arbitrary topological groups, Nyikos’s property $\alpha _{1.5}$ is equivalent to Arhangel’skiĭ’s formally stronger property $\alpha _1$. This result solves a problem of Shakhmatov (2002), and its proof uses a new perturbation argument. We also prove that there is a topological space $X$ such that the space ${\rm C_{p}}(X)$ of continuous real-valued functions on $X$ with the topology of pointwise convergence has Arhangel’skiĭ’s property $\alpha _1$ but is not countably tight. This follows from results of Arhangel’skiĭ–Pytkeev, Moore and Todorčević, and provides a new solution, with stronger properties than the earlier solution, of a problem of Averbukh and Smolyanov (1968) concerning topological vector spaces.
Keywords:
consider amalgamation properties convergent sequences topological groups topological vector spaces main result paper arbitrary topological groups nyikos property alpha equivalent arhangel ski formally stronger property alpha result solves problem shakhmatov its proof uses perturbation argument prove there topological space space continuous real valued functions topology pointwise convergence has arhangel ski property alpha countably tight follows results arhangel ski pytkeev moore todor evi provides solution stronger properties earlier solution problem averbukh smolyanov concerning topological vector spaces
Affiliations des auteurs :
Boaz Tsaban 1 ; Lyubomyr Zdomskyy 2
@article{10_4064_fm994_1_2016,
author = {Boaz Tsaban and Lyubomyr Zdomskyy},
title = {Arhangel'ski\u{i} sheaf amalgamations in topological groups},
journal = {Fundamenta Mathematicae},
pages = {281--293},
publisher = {mathdoc},
volume = {232},
number = {3},
year = {2016},
doi = {10.4064/fm994-1-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm994-1-2016/}
}
TY - JOUR AU - Boaz Tsaban AU - Lyubomyr Zdomskyy TI - Arhangel'skiĭ sheaf amalgamations in topological groups JO - Fundamenta Mathematicae PY - 2016 SP - 281 EP - 293 VL - 232 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm994-1-2016/ DO - 10.4064/fm994-1-2016 LA - en ID - 10_4064_fm994_1_2016 ER -
Boaz Tsaban; Lyubomyr Zdomskyy. Arhangel'skiĭ sheaf amalgamations in topological groups. Fundamenta Mathematicae, Tome 232 (2016) no. 3, pp. 281-293. doi: 10.4064/fm994-1-2016
Cité par Sources :