On the ideal convergence of sequences of quasi-continuous functions
Fundamenta Mathematicae, Tome 232 (2016) no. 3, pp. 269-280 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

For any Borel ideal $\mathcal {I}$ we describe the $\mathcal {I}$-Baire system generated by the family of quasi-continuous real-valued functions. We characterize the Borel ideals $\mathcal {I}$ for which the ideal and ordinary Baire systems coincide.
DOI : 10.4064/fm99-12-2015
Keywords: borel ideal mathcal describe mathcal baire system generated family quasi continuous real valued functions characterize borel ideals mathcal which ideal ordinary baire systems coincide

Tomasz Natkaniec  1   ; Piotr Szuca  1

1 Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland
@article{10_4064_fm99_12_2015,
     author = {Tomasz Natkaniec and Piotr Szuca},
     title = {On the ideal convergence of sequences of quasi-continuous functions},
     journal = {Fundamenta Mathematicae},
     pages = {269--280},
     year = {2016},
     volume = {232},
     number = {3},
     doi = {10.4064/fm99-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm99-12-2015/}
}
TY  - JOUR
AU  - Tomasz Natkaniec
AU  - Piotr Szuca
TI  - On the ideal convergence of sequences of quasi-continuous functions
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 269
EP  - 280
VL  - 232
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm99-12-2015/
DO  - 10.4064/fm99-12-2015
LA  - en
ID  - 10_4064_fm99_12_2015
ER  - 
%0 Journal Article
%A Tomasz Natkaniec
%A Piotr Szuca
%T On the ideal convergence of sequences of quasi-continuous functions
%J Fundamenta Mathematicae
%D 2016
%P 269-280
%V 232
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/fm99-12-2015/
%R 10.4064/fm99-12-2015
%G en
%F 10_4064_fm99_12_2015
Tomasz Natkaniec; Piotr Szuca. On the ideal convergence of sequences of quasi-continuous functions. Fundamenta Mathematicae, Tome 232 (2016) no. 3, pp. 269-280. doi: 10.4064/fm99-12-2015

Cité par Sources :