Word calculus in the fundamental group of the Menger curve
Fundamenta Mathematicae, Tome 235 (2016) no. 3, pp. 199-226.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The fundamental group of the Menger universal curve is uncountable and not free, although all of its finitely generated subgroups are free. It contains an isomorphic copy of the fundamental group of every one-dimensional separable metric space and an isomorphic copy of the fundamental group of every planar Peano continuum. We give an explicit and systematic combinatorial description of the fundamental group of the Menger universal curve and its generalized Cayley graph in terms of word sequences. The word calculus, which requires only two letters and their inverses, is based on Pasynkov’s partial topological product representation and can be expressed in terms of a variation on the classical puzzle known as the Towers of Hanoi.
DOI : 10.4064/fm918-6-2016
Keywords: fundamental group menger universal curve uncountable although its finitely generated subgroups contains isomorphic copy fundamental group every one dimensional separable metric space isomorphic copy fundamental group every planar peano continuum explicit systematic combinatorial description fundamental group menger universal curve its generalized cayley graph terms word sequences word calculus which requires only letters their inverses based pasynkov partial topological product representation expressed terms variation classical puzzle known towers hanoi

Hanspeter Fischer 1 ; Andreas Zastrow 2

1 Department of Mathematical Sciences Ball State University Muncie, IN 47306, U.S.A.
2 Institute of Mathematics Faculty of Mathematics, Physics and Informatics University of Gdańsk 80-308 Gdańsk, Poland
@article{10_4064_fm918_6_2016,
     author = {Hanspeter Fischer and Andreas Zastrow},
     title = {Word calculus in the fundamental group of the {Menger} curve},
     journal = {Fundamenta Mathematicae},
     pages = {199--226},
     publisher = {mathdoc},
     volume = {235},
     number = {3},
     year = {2016},
     doi = {10.4064/fm918-6-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm918-6-2016/}
}
TY  - JOUR
AU  - Hanspeter Fischer
AU  - Andreas Zastrow
TI  - Word calculus in the fundamental group of the Menger curve
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 199
EP  - 226
VL  - 235
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm918-6-2016/
DO  - 10.4064/fm918-6-2016
LA  - en
ID  - 10_4064_fm918_6_2016
ER  - 
%0 Journal Article
%A Hanspeter Fischer
%A Andreas Zastrow
%T Word calculus in the fundamental group of the Menger curve
%J Fundamenta Mathematicae
%D 2016
%P 199-226
%V 235
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm918-6-2016/
%R 10.4064/fm918-6-2016
%G en
%F 10_4064_fm918_6_2016
Hanspeter Fischer; Andreas Zastrow. Word calculus in the fundamental group of the Menger curve. Fundamenta Mathematicae, Tome 235 (2016) no. 3, pp. 199-226. doi : 10.4064/fm918-6-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm918-6-2016/

Cité par Sources :