Word calculus in the fundamental group of the Menger curve
Fundamenta Mathematicae, Tome 235 (2016) no. 3, pp. 199-226
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The fundamental group of the Menger universal curve is uncountable and not free, although all of its finitely generated subgroups are free. It contains an isomorphic copy of the fundamental group of every one-dimensional separable metric space and an isomorphic copy of the fundamental group of every planar Peano continuum. We give an explicit and systematic combinatorial description of the fundamental group of the Menger universal curve and its generalized Cayley graph in terms of word sequences. The word calculus, which requires only two letters and their inverses, is based on Pasynkov’s partial topological product representation and can be expressed in terms of a variation on the classical puzzle known as the Towers of Hanoi.
Keywords:
fundamental group menger universal curve uncountable although its finitely generated subgroups contains isomorphic copy fundamental group every one dimensional separable metric space isomorphic copy fundamental group every planar peano continuum explicit systematic combinatorial description fundamental group menger universal curve its generalized cayley graph terms word sequences word calculus which requires only letters their inverses based pasynkov partial topological product representation expressed terms variation classical puzzle known towers hanoi
Affiliations des auteurs :
Hanspeter Fischer 1 ; Andreas Zastrow 2
@article{10_4064_fm918_6_2016,
author = {Hanspeter Fischer and Andreas Zastrow},
title = {Word calculus in the fundamental group of the {Menger} curve},
journal = {Fundamenta Mathematicae},
pages = {199--226},
publisher = {mathdoc},
volume = {235},
number = {3},
year = {2016},
doi = {10.4064/fm918-6-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm918-6-2016/}
}
TY - JOUR AU - Hanspeter Fischer AU - Andreas Zastrow TI - Word calculus in the fundamental group of the Menger curve JO - Fundamenta Mathematicae PY - 2016 SP - 199 EP - 226 VL - 235 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm918-6-2016/ DO - 10.4064/fm918-6-2016 LA - en ID - 10_4064_fm918_6_2016 ER -
%0 Journal Article %A Hanspeter Fischer %A Andreas Zastrow %T Word calculus in the fundamental group of the Menger curve %J Fundamenta Mathematicae %D 2016 %P 199-226 %V 235 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm918-6-2016/ %R 10.4064/fm918-6-2016 %G en %F 10_4064_fm918_6_2016
Hanspeter Fischer; Andreas Zastrow. Word calculus in the fundamental group of the Menger curve. Fundamenta Mathematicae, Tome 235 (2016) no. 3, pp. 199-226. doi: 10.4064/fm918-6-2016
Cité par Sources :