Small product sets in compact groups
Fundamenta Mathematicae, Tome 238 (2017) no. 1, pp. 1-27
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that a subcritical pair $(A,B)$ of sufficiently “spread-out” Borel sets in a compact and second countable group $K$ with an abelian identity component must reduce to a Sturmian pair in either $\mathbb {T}$ or $\mathbb {T}\rtimes \{-1,1\}$. This extends a classical result of Kneser.
Keywords:
subcritical pair sufficiently spread out borel sets compact second countable group abelian identity component reduce sturmian pair either mathbb mathbb rtimes extends classical result kneser
Affiliations des auteurs :
Michael Björklund 1
@article{10_4064_fm896_11_2016,
author = {Michael Bj\"orklund},
title = {Small product sets in compact groups},
journal = {Fundamenta Mathematicae},
pages = {1--27},
publisher = {mathdoc},
volume = {238},
number = {1},
year = {2017},
doi = {10.4064/fm896-11-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm896-11-2016/}
}
Michael Björklund. Small product sets in compact groups. Fundamenta Mathematicae, Tome 238 (2017) no. 1, pp. 1-27. doi: 10.4064/fm896-11-2016
Cité par Sources :