Small product sets in compact groups
Fundamenta Mathematicae, Tome 238 (2017) no. 1, pp. 1-27.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that a subcritical pair $(A,B)$ of sufficiently “spread-out” Borel sets in a compact and second countable group $K$ with an abelian identity component must reduce to a Sturmian pair in either $\mathbb {T}$ or $\mathbb {T}\rtimes \{-1,1\}$. This extends a classical result of Kneser.
DOI : 10.4064/fm896-11-2016
Keywords: subcritical pair sufficiently spread out borel sets compact second countable group abelian identity component reduce sturmian pair either mathbb mathbb rtimes extends classical result kneser

Michael Björklund 1

1 Department of Mathematics Chalmers Göteborg, Sweden
@article{10_4064_fm896_11_2016,
     author = {Michael Bj\"orklund},
     title = {Small product sets in compact groups},
     journal = {Fundamenta Mathematicae},
     pages = {1--27},
     publisher = {mathdoc},
     volume = {238},
     number = {1},
     year = {2017},
     doi = {10.4064/fm896-11-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm896-11-2016/}
}
TY  - JOUR
AU  - Michael Björklund
TI  - Small product sets in compact groups
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 1
EP  - 27
VL  - 238
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm896-11-2016/
DO  - 10.4064/fm896-11-2016
LA  - en
ID  - 10_4064_fm896_11_2016
ER  - 
%0 Journal Article
%A Michael Björklund
%T Small product sets in compact groups
%J Fundamenta Mathematicae
%D 2017
%P 1-27
%V 238
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm896-11-2016/
%R 10.4064/fm896-11-2016
%G en
%F 10_4064_fm896_11_2016
Michael Björklund. Small product sets in compact groups. Fundamenta Mathematicae, Tome 238 (2017) no. 1, pp. 1-27. doi : 10.4064/fm896-11-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm896-11-2016/

Cité par Sources :