On Lusternik–Schnirelmann category of $\mathbf{SO}(10)$
Fundamenta Mathematicae, Tome 234 (2016) no. 3, pp. 201-227
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a compact connected Lie group and $p : E\to \varSigma A$ be a principal
$G$-bundle with a characteristic map $\alpha : A\to G$, where $A=\varSigma A_{0}$ for some $A_{0}$.
Let $\{K_{i} \to F_{i-1} \hookrightarrow F_{i} \mid 1 \le i \le m\}$ with
$F_{0}= \{\ast\}$, $F_{1} = \varSigma{K_{1}}$ and $F_{m}\simeq G $
be a cone-decomposition of $G$ of length $m$ and $F’_{1}=\varSigma{K’_{1}} \subset F_{1}$
with $K’_{1} \subset K_{1}$ which satisfy $F_{i}F’_{1} \subset F_{i+1}$ up to homotopy
for all $i$.
Then $\operatorname{cat}(E) \le m + 1$, under suitable conditions, which is used to
determine $\operatorname{cat}({\bf SO}(10))$.
A similar result was obtained by Kono and the first author (2007)
to determine $\operatorname{cat}({\bf Spin}(9))$,
but that result could not yield $\operatorname{cat}(E) \leq m + 1$.
Keywords:
compact connected lie group varsigma principal g bundle characteristic map alpha where varsigma i hookrightarrow mid ast varsigma simeq cone decomposition length varsigma subset subset which satisfy subset homotopy operatorname cat under suitable conditions which determine operatorname cat similar result obtained kono first author determine operatorname cat spin result could yield operatorname cat leq
Affiliations des auteurs :
Norio Iwase 1 ; Kai Kikuchi 2 ; Toshiyuki Miyauchi 3
@article{10_4064_fm678_11_2015,
author = {Norio Iwase and Kai Kikuchi and Toshiyuki Miyauchi},
title = {On {Lusternik{\textendash}Schnirelmann} category of $\mathbf{SO}(10)$},
journal = {Fundamenta Mathematicae},
pages = {201--227},
publisher = {mathdoc},
volume = {234},
number = {3},
year = {2016},
doi = {10.4064/fm678-11-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm678-11-2015/}
}
TY - JOUR
AU - Norio Iwase
AU - Kai Kikuchi
AU - Toshiyuki Miyauchi
TI - On Lusternik–Schnirelmann category of $\mathbf{SO}(10)$
JO - Fundamenta Mathematicae
PY - 2016
SP - 201
EP - 227
VL - 234
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm678-11-2015/
DO - 10.4064/fm678-11-2015
LA - en
ID - 10_4064_fm678_11_2015
ER -
%0 Journal Article
%A Norio Iwase
%A Kai Kikuchi
%A Toshiyuki Miyauchi
%T On Lusternik–Schnirelmann category of $\mathbf{SO}(10)$
%J Fundamenta Mathematicae
%D 2016
%P 201-227
%V 234
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm678-11-2015/
%R 10.4064/fm678-11-2015
%G en
%F 10_4064_fm678_11_2015
Norio Iwase; Kai Kikuchi; Toshiyuki Miyauchi. On Lusternik–Schnirelmann category of $\mathbf{SO}(10)$. Fundamenta Mathematicae, Tome 234 (2016) no. 3, pp. 201-227. doi: 10.4064/fm678-11-2015
Cité par Sources :