On Lusternik–Schnirelmann category of $\mathbf{SO}(10)$
Fundamenta Mathematicae, Tome 234 (2016) no. 3, pp. 201-227.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a compact connected Lie group and $p : E\to \varSigma A$ be a principal $G$-bundle with a characteristic map $\alpha : A\to G$, where $A=\varSigma A_{0}$ for some $A_{0}$. Let $\{K_{i} \to F_{i-1} \hookrightarrow F_{i} \mid 1 \le i \le m\}$ with $F_{0}= \{\ast\}$, $F_{1} = \varSigma{K_{1}}$ and $F_{m}\simeq G $ be a cone-decomposition of $G$ of length $m$ and $F’_{1}=\varSigma{K’_{1}} \subset F_{1}$ with $K’_{1} \subset K_{1}$ which satisfy $F_{i}F’_{1} \subset F_{i+1}$ up to homotopy for all $i$. Then $\operatorname{cat}(E) \le m + 1$, under suitable conditions, which is used to determine $\operatorname{cat}({\bf SO}(10))$. A similar result was obtained by Kono and the first author (2007) to determine $\operatorname{cat}({\bf Spin}(9))$, but that result could not yield $\operatorname{cat}(E) \leq m + 1$.
DOI : 10.4064/fm678-11-2015
Keywords: compact connected lie group varsigma principal g bundle characteristic map alpha where varsigma i hookrightarrow mid ast varsigma simeq cone decomposition length varsigma subset subset which satisfy subset homotopy operatorname cat under suitable conditions which determine operatorname cat similar result obtained kono first author determine operatorname cat spin result could yield operatorname cat leq

Norio Iwase 1 ; Kai Kikuchi 2 ; Toshiyuki Miyauchi 3

1 Faculty of Mathematics Kyushu University Motooka 744 Fukuoka 819-0395, Japan
2
3 Department of Applied Mathematics Faculty of Science Fukuoka University Fukuoka 814-0180, Japan
@article{10_4064_fm678_11_2015,
     author = {Norio Iwase and Kai Kikuchi and Toshiyuki Miyauchi},
     title = {On {Lusternik{\textendash}Schnirelmann} category of $\mathbf{SO}(10)$},
     journal = {Fundamenta Mathematicae},
     pages = {201--227},
     publisher = {mathdoc},
     volume = {234},
     number = {3},
     year = {2016},
     doi = {10.4064/fm678-11-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm678-11-2015/}
}
TY  - JOUR
AU  - Norio Iwase
AU  - Kai Kikuchi
AU  - Toshiyuki Miyauchi
TI  - On Lusternik–Schnirelmann category of $\mathbf{SO}(10)$
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 201
EP  - 227
VL  - 234
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm678-11-2015/
DO  - 10.4064/fm678-11-2015
LA  - en
ID  - 10_4064_fm678_11_2015
ER  - 
%0 Journal Article
%A Norio Iwase
%A Kai Kikuchi
%A Toshiyuki Miyauchi
%T On Lusternik–Schnirelmann category of $\mathbf{SO}(10)$
%J Fundamenta Mathematicae
%D 2016
%P 201-227
%V 234
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm678-11-2015/
%R 10.4064/fm678-11-2015
%G en
%F 10_4064_fm678_11_2015
Norio Iwase; Kai Kikuchi; Toshiyuki Miyauchi. On Lusternik–Schnirelmann category of $\mathbf{SO}(10)$. Fundamenta Mathematicae, Tome 234 (2016) no. 3, pp. 201-227. doi : 10.4064/fm678-11-2015. http://geodesic.mathdoc.fr/articles/10.4064/fm678-11-2015/

Cité par Sources :