Conjugacy classes of diffeomorphisms of the interval in $\mathcal {C}^{1}$-regularity
Fundamenta Mathematicae, Tome 237 (2017) no. 3, pp. 201-248.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the conjugacy classes of diffeomorphisms of the interval, endowed with the $\mathcal{C}^1$-topology. Given two diffeomorphisms $f,g$ of $[0;1]$ without hyperbolic fixed points, we give a complete answer to the following two questions: $\bullet$ under what conditions does there exist a sequence of smooth conjugates $h_n f h_n^{-1}$ of $f$ tending to $g$ in the $\mathcal{C}^1$-topology? $\bullet$ under what conditions does there exist a continuous path of $\mathcal{C}^1$-diffeomorphisms $h_t$ such that $h_t f h_t^{-1}$ tends to $g$ in the $\mathcal{C}^1$-topology? We also present some consequences of these results to the study of $\mathcal{C}^1$-centralizers for $\mathcal{C}^1$-contractions of $[0;\infty)$; for instance, we exhibit a $\mathcal{C}^1$-contraction whose centralizer is uncountable and abelian, but is not a flow.
DOI : 10.4064/fm594-8-2014
Keywords: consider conjugacy classes diffeomorphisms interval endowed mathcal topology given diffeomorphisms without hyperbolic fixed points complete answer following questions bullet under what conditions does there exist sequence smooth conjugates h tending mathcal topology bullet under what conditions does there exist continuous path mathcal diffeomorphisms h tends mathcal topology present consequences these results study mathcal centralizers mathcal contractions infty instance exhibit mathcal contraction whose centralizer uncountable abelian flow

Églantine Farinelli 1

1 Institut de Mathématiques de Bourgogne CNRS, URM 5584 Université de Bourgogne Dijon 21000, France
@article{10_4064_fm594_8_2014,
     author = {\'Eglantine Farinelli},
     title = {Conjugacy classes of diffeomorphisms of the interval in $\mathcal {C}^{1}$-regularity},
     journal = {Fundamenta Mathematicae},
     pages = {201--248},
     publisher = {mathdoc},
     volume = {237},
     number = {3},
     year = {2017},
     doi = {10.4064/fm594-8-2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm594-8-2014/}
}
TY  - JOUR
AU  - Églantine Farinelli
TI  - Conjugacy classes of diffeomorphisms of the interval in $\mathcal {C}^{1}$-regularity
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 201
EP  - 248
VL  - 237
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm594-8-2014/
DO  - 10.4064/fm594-8-2014
LA  - en
ID  - 10_4064_fm594_8_2014
ER  - 
%0 Journal Article
%A Églantine Farinelli
%T Conjugacy classes of diffeomorphisms of the interval in $\mathcal {C}^{1}$-regularity
%J Fundamenta Mathematicae
%D 2017
%P 201-248
%V 237
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm594-8-2014/
%R 10.4064/fm594-8-2014
%G en
%F 10_4064_fm594_8_2014
Églantine Farinelli. Conjugacy classes of diffeomorphisms of the interval in $\mathcal {C}^{1}$-regularity. Fundamenta Mathematicae, Tome 237 (2017) no. 3, pp. 201-248. doi : 10.4064/fm594-8-2014. http://geodesic.mathdoc.fr/articles/10.4064/fm594-8-2014/

Cité par Sources :