Conjugacy classes of diffeomorphisms of the interval in $\mathcal {C}^{1}$-regularity
Fundamenta Mathematicae, Tome 237 (2017) no. 3, pp. 201-248
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the conjugacy classes of diffeomorphisms of the interval, endowed with the $\mathcal{C}^1$-topology. Given two diffeomorphisms $f,g$ of $[0;1]$ without hyperbolic fixed points, we give a complete answer to the following two questions: $\bullet$ under what conditions does there exist a sequence of smooth conjugates $h_n f h_n^{-1}$ of $f$ tending to $g$ in the $\mathcal{C}^1$-topology? $\bullet$ under what conditions does there exist a continuous path of $\mathcal{C}^1$-diffeomorphisms $h_t$ such that $h_t f h_t^{-1}$ tends to $g$ in the $\mathcal{C}^1$-topology? We also present some consequences of these results to the study of $\mathcal{C}^1$-centralizers for $\mathcal{C}^1$-contractions of $[0;\infty)$; for instance, we exhibit a $\mathcal{C}^1$-contraction whose centralizer is uncountable and abelian, but is not a flow.
Keywords:
consider conjugacy classes diffeomorphisms interval endowed mathcal topology given diffeomorphisms without hyperbolic fixed points complete answer following questions bullet under what conditions does there exist sequence smooth conjugates h tending mathcal topology bullet under what conditions does there exist continuous path mathcal diffeomorphisms h tends mathcal topology present consequences these results study mathcal centralizers mathcal contractions infty instance exhibit mathcal contraction whose centralizer uncountable abelian flow
Affiliations des auteurs :
Églantine Farinelli 1
@article{10_4064_fm594_8_2014,
author = {\'Eglantine Farinelli},
title = {Conjugacy classes of diffeomorphisms of the interval in $\mathcal {C}^{1}$-regularity},
journal = {Fundamenta Mathematicae},
pages = {201--248},
publisher = {mathdoc},
volume = {237},
number = {3},
year = {2017},
doi = {10.4064/fm594-8-2014},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm594-8-2014/}
}
TY - JOUR
AU - Églantine Farinelli
TI - Conjugacy classes of diffeomorphisms of the interval in $\mathcal {C}^{1}$-regularity
JO - Fundamenta Mathematicae
PY - 2017
SP - 201
EP - 248
VL - 237
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm594-8-2014/
DO - 10.4064/fm594-8-2014
LA - en
ID - 10_4064_fm594_8_2014
ER -
%0 Journal Article
%A Églantine Farinelli
%T Conjugacy classes of diffeomorphisms of the interval in $\mathcal {C}^{1}$-regularity
%J Fundamenta Mathematicae
%D 2017
%P 201-248
%V 237
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm594-8-2014/
%R 10.4064/fm594-8-2014
%G en
%F 10_4064_fm594_8_2014
Églantine Farinelli. Conjugacy classes of diffeomorphisms of the interval in $\mathcal {C}^{1}$-regularity. Fundamenta Mathematicae, Tome 237 (2017) no. 3, pp. 201-248. doi: 10.4064/fm594-8-2014
Cité par Sources :