Indestructible guessing models and the continuum
Fundamenta Mathematicae, Tome 239 (2017) no. 3, pp. 221-258
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce a stronger version of an $\omega _1$-guessing model, which we call an indestructibly $\omega _1$-guessing model. The principle $\mathsf {IGMP}$ states that there are stationarily many indestructibly $\omega _1$-guessing models. This principle, which follows from $\mathsf {PFA}$, captures many of the consequences of $\mathsf {PFA}$, including the Suslin hypothesis and the singular cardinal hypothesis. We prove that $\mathsf {IGMP}$ is consistent with the continuum being arbitrarily large.
Keywords:
introduce stronger version omega guessing model which call indestructibly omega guessing model principle mathsf igmp states there stationarily many indestructibly omega guessing models principle which follows mathsf pfa captures many consequences mathsf pfa including suslin hypothesis singular cardinal hypothesis prove mathsf igmp consistent continuum being arbitrarily large
Affiliations des auteurs :
Sean Cox 1 ; John Krueger 2
@article{10_4064_fm340_1_2017,
author = {Sean Cox and John Krueger},
title = {Indestructible guessing models and the continuum},
journal = {Fundamenta Mathematicae},
pages = {221--258},
publisher = {mathdoc},
volume = {239},
number = {3},
year = {2017},
doi = {10.4064/fm340-1-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm340-1-2017/}
}
TY - JOUR AU - Sean Cox AU - John Krueger TI - Indestructible guessing models and the continuum JO - Fundamenta Mathematicae PY - 2017 SP - 221 EP - 258 VL - 239 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm340-1-2017/ DO - 10.4064/fm340-1-2017 LA - en ID - 10_4064_fm340_1_2017 ER -
Sean Cox; John Krueger. Indestructible guessing models and the continuum. Fundamenta Mathematicae, Tome 239 (2017) no. 3, pp. 221-258. doi: 10.4064/fm340-1-2017
Cité par Sources :