Indestructible guessing models and the continuum
Fundamenta Mathematicae, Tome 239 (2017) no. 3, pp. 221-258.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce a stronger version of an $\omega _1$-guessing model, which we call an indestructibly $\omega _1$-guessing model. The principle $\mathsf {IGMP}$ states that there are stationarily many indestructibly $\omega _1$-guessing models. This principle, which follows from $\mathsf {PFA}$, captures many of the consequences of $\mathsf {PFA}$, including the Suslin hypothesis and the singular cardinal hypothesis. We prove that $\mathsf {IGMP}$ is consistent with the continuum being arbitrarily large.
DOI : 10.4064/fm340-1-2017
Keywords: introduce stronger version omega guessing model which call indestructibly omega guessing model principle mathsf igmp states there stationarily many indestructibly omega guessing models principle which follows mathsf pfa captures many consequences mathsf pfa including suslin hypothesis singular cardinal hypothesis prove mathsf igmp consistent continuum being arbitrarily large

Sean Cox 1 ; John Krueger 2

1 Department of Mathematics and Applied Mathematics Virginia Commonwealth University 1015 Floyd Avenue P.O. Box 842014 Richmond, VA 23284, U.S.A.
2 Department of Mathematics University of North Texas 1155 Union Circle #311430 Denton, TX 76203, U.S.A.
@article{10_4064_fm340_1_2017,
     author = {Sean Cox and John Krueger},
     title = {Indestructible guessing models and the continuum},
     journal = {Fundamenta Mathematicae},
     pages = {221--258},
     publisher = {mathdoc},
     volume = {239},
     number = {3},
     year = {2017},
     doi = {10.4064/fm340-1-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm340-1-2017/}
}
TY  - JOUR
AU  - Sean Cox
AU  - John Krueger
TI  - Indestructible guessing models and the continuum
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 221
EP  - 258
VL  - 239
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm340-1-2017/
DO  - 10.4064/fm340-1-2017
LA  - en
ID  - 10_4064_fm340_1_2017
ER  - 
%0 Journal Article
%A Sean Cox
%A John Krueger
%T Indestructible guessing models and the continuum
%J Fundamenta Mathematicae
%D 2017
%P 221-258
%V 239
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm340-1-2017/
%R 10.4064/fm340-1-2017
%G en
%F 10_4064_fm340_1_2017
Sean Cox; John Krueger. Indestructible guessing models and the continuum. Fundamenta Mathematicae, Tome 239 (2017) no. 3, pp. 221-258. doi : 10.4064/fm340-1-2017. http://geodesic.mathdoc.fr/articles/10.4064/fm340-1-2017/

Cité par Sources :