Rosenthal compacta that are premetric of finite degree
Fundamenta Mathematicae, Tome 239 (2017) no. 3, pp. 259-278
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that if a separable Rosenthal compactum $K$ is a continuous $n$-to-one preimage of a metric compactum, but it is not a continuous $n-1$-to-one preimage, then $K$ contains a closed subset homeomorphic to either the $n$-split interval $S_n(I)$ or the Alexandroff $n$-plicate $D_n(2^{\mathbb N})$. This generalizes a result of the third author that corresponds to the case $n=2$.
Keywords:
separable rosenthal compactum continuous n to one preimage metric compactum continuous n to one preimage contains closed subset homeomorphic either n split interval alexandroff n plicate mathbb generalizes result third author corresponds
Affiliations des auteurs :
Antonio Avilés 1 ; Alejandro Poveda 2 ; Stevo Todorcevic 3
@article{10_4064_fm333_12_2016,
author = {Antonio Avil\'es and Alejandro Poveda and Stevo Todorcevic},
title = {Rosenthal compacta that are premetric of finite degree},
journal = {Fundamenta Mathematicae},
pages = {259--278},
year = {2017},
volume = {239},
number = {3},
doi = {10.4064/fm333-12-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm333-12-2016/}
}
TY - JOUR AU - Antonio Avilés AU - Alejandro Poveda AU - Stevo Todorcevic TI - Rosenthal compacta that are premetric of finite degree JO - Fundamenta Mathematicae PY - 2017 SP - 259 EP - 278 VL - 239 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm333-12-2016/ DO - 10.4064/fm333-12-2016 LA - en ID - 10_4064_fm333_12_2016 ER -
%0 Journal Article %A Antonio Avilés %A Alejandro Poveda %A Stevo Todorcevic %T Rosenthal compacta that are premetric of finite degree %J Fundamenta Mathematicae %D 2017 %P 259-278 %V 239 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/fm333-12-2016/ %R 10.4064/fm333-12-2016 %G en %F 10_4064_fm333_12_2016
Antonio Avilés; Alejandro Poveda; Stevo Todorcevic. Rosenthal compacta that are premetric of finite degree. Fundamenta Mathematicae, Tome 239 (2017) no. 3, pp. 259-278. doi: 10.4064/fm333-12-2016
Cité par Sources :