Rosenthal compacta that are premetric of finite degree
Fundamenta Mathematicae, Tome 239 (2017) no. 3, pp. 259-278.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if a separable Rosenthal compactum $K$ is a continuous $n$-to-one preimage of a metric compactum, but it is not a continuous $n-1$-to-one preimage, then $K$ contains a closed subset homeomorphic to either the $n$-split interval $S_n(I)$ or the Alexandroff $n$-plicate $D_n(2^{\mathbb N})$. This generalizes a result of the third author that corresponds to the case $n=2$.
DOI : 10.4064/fm333-12-2016
Keywords: separable rosenthal compactum continuous n to one preimage metric compactum continuous n to one preimage contains closed subset homeomorphic either n split interval alexandroff n plicate mathbb generalizes result third author corresponds

Antonio Avilés 1 ; Alejandro Poveda 2 ; Stevo Todorcevic 3

1 Departamento de Matemáticas Universidad de Murcia 30100 Murcia, Spain
2 Departament de Matemàtiques i Informàtica Universitat de Barcelona Gran Via de les Corts Catalanes 585 08007 Barcelona, Spain
3 Department of Mathematics University of Toronto M5S 3G3 Toronto, Canada and Institut de Mathématiques de Jussieu CNRS UMR 7586 Case 247 4 Place Jussieu 75252 Paris, France
@article{10_4064_fm333_12_2016,
     author = {Antonio Avil\'es and Alejandro Poveda and Stevo Todorcevic},
     title = {Rosenthal compacta that are premetric of finite degree},
     journal = {Fundamenta Mathematicae},
     pages = {259--278},
     publisher = {mathdoc},
     volume = {239},
     number = {3},
     year = {2017},
     doi = {10.4064/fm333-12-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm333-12-2016/}
}
TY  - JOUR
AU  - Antonio Avilés
AU  - Alejandro Poveda
AU  - Stevo Todorcevic
TI  - Rosenthal compacta that are premetric of finite degree
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 259
EP  - 278
VL  - 239
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm333-12-2016/
DO  - 10.4064/fm333-12-2016
LA  - en
ID  - 10_4064_fm333_12_2016
ER  - 
%0 Journal Article
%A Antonio Avilés
%A Alejandro Poveda
%A Stevo Todorcevic
%T Rosenthal compacta that are premetric of finite degree
%J Fundamenta Mathematicae
%D 2017
%P 259-278
%V 239
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm333-12-2016/
%R 10.4064/fm333-12-2016
%G en
%F 10_4064_fm333_12_2016
Antonio Avilés; Alejandro Poveda; Stevo Todorcevic. Rosenthal compacta that are premetric of finite degree. Fundamenta Mathematicae, Tome 239 (2017) no. 3, pp. 259-278. doi : 10.4064/fm333-12-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm333-12-2016/

Cité par Sources :