Hereditarily non-weakly chainable continua in products of plane continua
Fundamenta Mathematicae, Tome 239 (2017) no. 1, pp. 19-27
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that the product of any two non-degenerate plane continua contains a non-degenerate hereditarily non-weakly chainable continuum. Consequently, in the product of two pseudo-arcs, there exists a non-degenerate subcontinuum containing no pseudo-arc. This answers a question by D. P. Bellamy.
Keywords:
prove product non degenerate plane continua contains non degenerate hereditarily non weakly chainable continuum consequently product pseudo arcs there exists non degenerate subcontinuum containing pseudo arc answers question bellamy
Affiliations des auteurs :
Alejandro Illanes 1
@article{10_4064_fm315_10_2016,
author = {Alejandro Illanes},
title = {Hereditarily non-weakly chainable continua in products of plane continua},
journal = {Fundamenta Mathematicae},
pages = {19--27},
year = {2017},
volume = {239},
number = {1},
doi = {10.4064/fm315-10-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm315-10-2016/}
}
TY - JOUR AU - Alejandro Illanes TI - Hereditarily non-weakly chainable continua in products of plane continua JO - Fundamenta Mathematicae PY - 2017 SP - 19 EP - 27 VL - 239 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm315-10-2016/ DO - 10.4064/fm315-10-2016 LA - en ID - 10_4064_fm315_10_2016 ER -
Alejandro Illanes. Hereditarily non-weakly chainable continua in products of plane continua. Fundamenta Mathematicae, Tome 239 (2017) no. 1, pp. 19-27. doi: 10.4064/fm315-10-2016
Cité par Sources :