Banach-lattice isomorphisms of $C_0(K,X)$ spaces which determine the locally compact spaces $K$
Fundamenta Mathematicae, Tome 239 (2017) no. 2, pp. 185-200.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a locally compact Hausdorff space $K$ and a real Banach-lattice $X$ let $C_0(K, X)$ denote the Banach lattice of all $X$-valued continuous functions vanishing at infinity, endowed with the supremum norm. We refine some Banach space results due to Cambern to the setting of Banach lattices to prove that if there is a Banach-lattice isomorphism $T$ from $C_0(K,X)$ onto $C_0(S,X)$ satisfying $$ \|T\|\, \|T^{-1}\| \lt \lambda^{+}(X), $$ then $K$ and $S$ are homeomorphic, where $$ \lambda^{+}(X)=\inf\{\max\{\|x-y\|,\|x+y\|\}:\|x\|= \|y\|= 1\text{ and }x,y\geq0\}. $$ This result is optimal for the classical $l_{p}$ spaces, $1 \leq p \lt \infty$.
DOI : 10.4064/fm294-1-2017
Keywords: locally compact hausdorff space real banach lattice denote banach lattice x valued continuous functions vanishing infinity endowed supremum norm refine banach space results due cambern setting banach lattices prove there banach lattice isomorphism satisfying lambda homeomorphic where lambda inf max x y text geq result optimal classical spaces leq infty

Elói Medina Galego 1 ; Michael A. Rincón-Villamizar 2

1 Department of Mathematics, IME University of São Paulo Rua do Matão 1010 São Paulo, Brazil
2 Escuela de Matemáticas Facultad de Ciencias Universidad Industrial de Santander Carrera 27, calle 9 Bucaramanga, Colombia
@article{10_4064_fm294_1_2017,
     author = {El\'oi Medina Galego and Michael A. Rinc\'on-Villamizar},
     title = {Banach-lattice isomorphisms of $C_0(K,X)$ spaces which determine the locally compact spaces $K$},
     journal = {Fundamenta Mathematicae},
     pages = {185--200},
     publisher = {mathdoc},
     volume = {239},
     number = {2},
     year = {2017},
     doi = {10.4064/fm294-1-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm294-1-2017/}
}
TY  - JOUR
AU  - Elói Medina Galego
AU  - Michael A. Rincón-Villamizar
TI  - Banach-lattice isomorphisms of $C_0(K,X)$ spaces which determine the locally compact spaces $K$
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 185
EP  - 200
VL  - 239
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm294-1-2017/
DO  - 10.4064/fm294-1-2017
LA  - en
ID  - 10_4064_fm294_1_2017
ER  - 
%0 Journal Article
%A Elói Medina Galego
%A Michael A. Rincón-Villamizar
%T Banach-lattice isomorphisms of $C_0(K,X)$ spaces which determine the locally compact spaces $K$
%J Fundamenta Mathematicae
%D 2017
%P 185-200
%V 239
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm294-1-2017/
%R 10.4064/fm294-1-2017
%G en
%F 10_4064_fm294_1_2017
Elói Medina Galego; Michael A. Rincón-Villamizar. Banach-lattice isomorphisms of $C_0(K,X)$ spaces which determine the locally compact spaces $K$. Fundamenta Mathematicae, Tome 239 (2017) no. 2, pp. 185-200. doi : 10.4064/fm294-1-2017. http://geodesic.mathdoc.fr/articles/10.4064/fm294-1-2017/

Cité par Sources :