Banach-lattice isomorphisms of $C_0(K,X)$ spaces which determine the locally compact spaces $K$
Fundamenta Mathematicae, Tome 239 (2017) no. 2, pp. 185-200
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a locally compact Hausdorff space $K$ and a real Banach-lattice
$X$ let $C_0(K, X)$ denote the Banach lattice of all $X$-valued
continuous functions vanishing at infinity, endowed with the supremum
norm.
We refine some Banach space results due to Cambern to the setting of
Banach lattices to prove that if there is a Banach-lattice isomorphism $T$
from $C_0(K,X)$ onto $C_0(S,X)$ satisfying $$
\|T\|\, \|T^{-1}\| \lt \lambda^{+}(X),
$$ then $K$ and $S$ are homeomorphic, where
$$
\lambda^{+}(X)=\inf\{\max\{\|x-y\|,\|x+y\|\}:\|x\|= \|y\|= 1\text{ and }x,y\geq0\}.
$$
This result is optimal for the classical $l_{p}$ spaces, $1 \leq p \lt \infty$.
Keywords:
locally compact hausdorff space real banach lattice denote banach lattice x valued continuous functions vanishing infinity endowed supremum norm refine banach space results due cambern setting banach lattices prove there banach lattice isomorphism satisfying lambda homeomorphic where lambda inf max x y text geq result optimal classical spaces leq infty
Affiliations des auteurs :
Elói Medina Galego 1 ; Michael A. Rincón-Villamizar 2
@article{10_4064_fm294_1_2017,
author = {El\'oi Medina Galego and Michael A. Rinc\'on-Villamizar},
title = {Banach-lattice isomorphisms of $C_0(K,X)$ spaces which determine the locally compact spaces $K$},
journal = {Fundamenta Mathematicae},
pages = {185--200},
publisher = {mathdoc},
volume = {239},
number = {2},
year = {2017},
doi = {10.4064/fm294-1-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm294-1-2017/}
}
TY - JOUR AU - Elói Medina Galego AU - Michael A. Rincón-Villamizar TI - Banach-lattice isomorphisms of $C_0(K,X)$ spaces which determine the locally compact spaces $K$ JO - Fundamenta Mathematicae PY - 2017 SP - 185 EP - 200 VL - 239 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm294-1-2017/ DO - 10.4064/fm294-1-2017 LA - en ID - 10_4064_fm294_1_2017 ER -
%0 Journal Article %A Elói Medina Galego %A Michael A. Rincón-Villamizar %T Banach-lattice isomorphisms of $C_0(K,X)$ spaces which determine the locally compact spaces $K$ %J Fundamenta Mathematicae %D 2017 %P 185-200 %V 239 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm294-1-2017/ %R 10.4064/fm294-1-2017 %G en %F 10_4064_fm294_1_2017
Elói Medina Galego; Michael A. Rincón-Villamizar. Banach-lattice isomorphisms of $C_0(K,X)$ spaces which determine the locally compact spaces $K$. Fundamenta Mathematicae, Tome 239 (2017) no. 2, pp. 185-200. doi: 10.4064/fm294-1-2017
Cité par Sources :