The strength of Turing determinacy within second order arithmetic
Fundamenta Mathematicae, Tome 232 (2016) no. 3, pp. 249-268
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We investigate the reverse mathematical strength of Turing determinacy up to $\Sigma _{5}^{0}$, which is itself not provable in second order arithmetic.
Keywords:
investigate reverse mathematical strength turing determinacy sigma which itself provable second order arithmetic
Affiliations des auteurs :
Antonio Montalbán 1 ; Richard A. Shore 2
@article{10_4064_fm27_12_2015,
author = {Antonio Montalb\'an and Richard A. Shore},
title = {The strength of {Turing} determinacy within second order arithmetic},
journal = {Fundamenta Mathematicae},
pages = {249--268},
year = {2016},
volume = {232},
number = {3},
doi = {10.4064/fm27-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm27-12-2015/}
}
TY - JOUR AU - Antonio Montalbán AU - Richard A. Shore TI - The strength of Turing determinacy within second order arithmetic JO - Fundamenta Mathematicae PY - 2016 SP - 249 EP - 268 VL - 232 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm27-12-2015/ DO - 10.4064/fm27-12-2015 LA - en ID - 10_4064_fm27_12_2015 ER -
%0 Journal Article %A Antonio Montalbán %A Richard A. Shore %T The strength of Turing determinacy within second order arithmetic %J Fundamenta Mathematicae %D 2016 %P 249-268 %V 232 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/fm27-12-2015/ %R 10.4064/fm27-12-2015 %G en %F 10_4064_fm27_12_2015
Antonio Montalbán; Richard A. Shore. The strength of Turing determinacy within second order arithmetic. Fundamenta Mathematicae, Tome 232 (2016) no. 3, pp. 249-268. doi: 10.4064/fm27-12-2015
Cité par Sources :