Restricted Steinhaus sets in the plane
Fundamenta Mathematicae, Tome 238 (2017) no. 2, pp. 153-166.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For each prime $p$ we show the existence of a partial Steinhaus set in the plane for the prime $p$ which can be obtained from the points $\{ ({i/p}, {j/p}) : 0 \leq i,j \lt p\}$ by translating by integer amounts only in the horizontal direction. We raise several questions concerning these sets.
DOI : 10.4064/fm260-7-2016
Keywords: each prime existence partial steinhaus set plane prime which obtained points leq translating integer amounts only horizontal direction raise several questions concerning these sets

Devon Henkis 1 ; Steve Jackson 1 ; Jeff Lobe 1

1 Department of Mathematics University of North Texas Denton, TX 76203, U.S.A.
@article{10_4064_fm260_7_2016,
     author = {Devon Henkis and Steve Jackson and Jeff Lobe},
     title = {Restricted {Steinhaus} sets in the plane},
     journal = {Fundamenta Mathematicae},
     pages = {153--166},
     publisher = {mathdoc},
     volume = {238},
     number = {2},
     year = {2017},
     doi = {10.4064/fm260-7-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm260-7-2016/}
}
TY  - JOUR
AU  - Devon Henkis
AU  - Steve Jackson
AU  - Jeff Lobe
TI  - Restricted Steinhaus sets in the plane
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 153
EP  - 166
VL  - 238
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm260-7-2016/
DO  - 10.4064/fm260-7-2016
LA  - en
ID  - 10_4064_fm260_7_2016
ER  - 
%0 Journal Article
%A Devon Henkis
%A Steve Jackson
%A Jeff Lobe
%T Restricted Steinhaus sets in the plane
%J Fundamenta Mathematicae
%D 2017
%P 153-166
%V 238
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm260-7-2016/
%R 10.4064/fm260-7-2016
%G en
%F 10_4064_fm260_7_2016
Devon Henkis; Steve Jackson; Jeff Lobe. Restricted Steinhaus sets in the plane. Fundamenta Mathematicae, Tome 238 (2017) no. 2, pp. 153-166. doi : 10.4064/fm260-7-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm260-7-2016/

Cité par Sources :