Strong Chang’s Conjecture, Semi-Stationary Reflection, the Strong Tree Property and two-cardinal square principles
Fundamenta Mathematicae, Tome 236 (2017) no. 3, pp. 247-262.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a strong version of Chang’s Conjecture implies both the Strong Tree Property for $\omega _2$ and the negation of the square principle $\square (\lambda , \omega )$ for every regular cardinal $\lambda \geq \omega _2$.
DOI : 10.4064/fm257-5-2016
Keywords: prove strong version chang conjecture implies strong tree property omega negation square principle square lambda omega every regular cardinal lambda geq omega

Víctor Torres-Pérez 1 ; Liuzhen Wu 2

1 Institut für Diskrete Mathematik und Geometrie TU Wien Wiedner Hauptstraße 8/104 1040 Wien, Austria
2 Institute of Mathematics Chinese Academy of Sciences East Zhong Guan Cun Road No. 55 Beijing 100190, China
@article{10_4064_fm257_5_2016,
     author = {V{\'\i}ctor Torres-P\'erez and Liuzhen Wu},
     title = {Strong {Chang{\textquoteright}s} {Conjecture,} {Semi-Stationary} {Reflection,} the {Strong} {Tree} {Property} and two-cardinal square principles},
     journal = {Fundamenta Mathematicae},
     pages = {247--262},
     publisher = {mathdoc},
     volume = {236},
     number = {3},
     year = {2017},
     doi = {10.4064/fm257-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm257-5-2016/}
}
TY  - JOUR
AU  - Víctor Torres-Pérez
AU  - Liuzhen Wu
TI  - Strong Chang’s Conjecture, Semi-Stationary Reflection, the Strong Tree Property and two-cardinal square principles
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 247
EP  - 262
VL  - 236
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm257-5-2016/
DO  - 10.4064/fm257-5-2016
LA  - en
ID  - 10_4064_fm257_5_2016
ER  - 
%0 Journal Article
%A Víctor Torres-Pérez
%A Liuzhen Wu
%T Strong Chang’s Conjecture, Semi-Stationary Reflection, the Strong Tree Property and two-cardinal square principles
%J Fundamenta Mathematicae
%D 2017
%P 247-262
%V 236
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm257-5-2016/
%R 10.4064/fm257-5-2016
%G en
%F 10_4064_fm257_5_2016
Víctor Torres-Pérez; Liuzhen Wu. Strong Chang’s Conjecture, Semi-Stationary Reflection, the Strong Tree Property and two-cardinal square principles. Fundamenta Mathematicae, Tome 236 (2017) no. 3, pp. 247-262. doi : 10.4064/fm257-5-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm257-5-2016/

Cité par Sources :