Strong Chang’s Conjecture, Semi-Stationary Reflection, the Strong Tree Property and two-cardinal square principles
Fundamenta Mathematicae, Tome 236 (2017) no. 3, pp. 247-262
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that a strong version of Chang’s Conjecture implies both the Strong Tree Property for $\omega _2$ and the negation of the square principle $\square (\lambda , \omega )$ for every regular cardinal $\lambda \geq \omega _2$.
Keywords:
prove strong version chang conjecture implies strong tree property omega negation square principle square lambda omega every regular cardinal lambda geq omega
Affiliations des auteurs :
Víctor Torres-Pérez 1 ; Liuzhen Wu 2
@article{10_4064_fm257_5_2016,
author = {V{\'\i}ctor Torres-P\'erez and Liuzhen Wu},
title = {Strong {Chang{\textquoteright}s} {Conjecture,} {Semi-Stationary} {Reflection,} the {Strong} {Tree} {Property} and two-cardinal square principles},
journal = {Fundamenta Mathematicae},
pages = {247--262},
publisher = {mathdoc},
volume = {236},
number = {3},
year = {2017},
doi = {10.4064/fm257-5-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm257-5-2016/}
}
TY - JOUR AU - Víctor Torres-Pérez AU - Liuzhen Wu TI - Strong Chang’s Conjecture, Semi-Stationary Reflection, the Strong Tree Property and two-cardinal square principles JO - Fundamenta Mathematicae PY - 2017 SP - 247 EP - 262 VL - 236 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm257-5-2016/ DO - 10.4064/fm257-5-2016 LA - en ID - 10_4064_fm257_5_2016 ER -
%0 Journal Article %A Víctor Torres-Pérez %A Liuzhen Wu %T Strong Chang’s Conjecture, Semi-Stationary Reflection, the Strong Tree Property and two-cardinal square principles %J Fundamenta Mathematicae %D 2017 %P 247-262 %V 236 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm257-5-2016/ %R 10.4064/fm257-5-2016 %G en %F 10_4064_fm257_5_2016
Víctor Torres-Pérez; Liuzhen Wu. Strong Chang’s Conjecture, Semi-Stationary Reflection, the Strong Tree Property and two-cardinal square principles. Fundamenta Mathematicae, Tome 236 (2017) no. 3, pp. 247-262. doi: 10.4064/fm257-5-2016
Cité par Sources :