Strong theories of ordered Abelian groups
Fundamenta Mathematicae, Tome 236 (2017) no. 3, pp. 269-296
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider strong expansions of the theory of ordered Abelian groups. We show that the assumption of strength has a multitude of desirable consequences for the structure of definable sets in such theories, in particular as relates to definable infinite discrete sets. We also provide a range of examples of strong expansions of ordered Abelian groups which demonstrate the great variety of such theories.
Keywords:
consider strong expansions theory ordered abelian groups assumption strength has multitude desirable consequences structure definable sets theories particular relates definable infinite discrete sets provide range examples strong expansions ordered abelian groups which demonstrate great variety theories
Affiliations des auteurs :
Alfred Dolich 1 ; John Goodrick 2
@article{10_4064_fm256_5_2016,
author = {Alfred Dolich and John Goodrick},
title = {Strong theories of ordered {Abelian} groups},
journal = {Fundamenta Mathematicae},
pages = {269--296},
publisher = {mathdoc},
volume = {236},
number = {3},
year = {2017},
doi = {10.4064/fm256-5-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm256-5-2016/}
}
TY - JOUR AU - Alfred Dolich AU - John Goodrick TI - Strong theories of ordered Abelian groups JO - Fundamenta Mathematicae PY - 2017 SP - 269 EP - 296 VL - 236 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm256-5-2016/ DO - 10.4064/fm256-5-2016 LA - en ID - 10_4064_fm256_5_2016 ER -
Alfred Dolich; John Goodrick. Strong theories of ordered Abelian groups. Fundamenta Mathematicae, Tome 236 (2017) no. 3, pp. 269-296. doi: 10.4064/fm256-5-2016
Cité par Sources :